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Abstract. Analysis of protein - small molecule interactions is crucial in the 

discovery of new drug candidates and lead structure optimization. Small 

biomolecules (ligands) are highly flexible and may adopt numerous 

conformations upon binding to the protein. Scoring functions are traditionally 

used in many docking protocols and have key impact on a quality of structure-

based virtual screening. A correct scoring function should be able to guide 

search algorithm to find and recognize native-like docking poses. In ideal case 

scoring function should be able to predict binding affinity. Despite extensive 

research, scoring remains a major challenge in structure-based virtual screening. 

We apply Stochastic Roadmap Simulation (SRS) and finite absorbing Markov 

chain theory to build a model of protein-ligand binding process [1, 2]. We 

propose a computational quantity – time to escape (TTE) from a funnel of 

attraction around binding site as a measure of binding affinity. The results 

based on PDBBind CoreSet [3] show statistically significant correlation 

between actual binding affinity and  calculated TTE. 

1 Model of protein-ligand interaction  

The model of electrostatics associated with Poisson-Boltzmann equation is far 

more accurate in this case than simple Coulombic models and incorporates features 

such as location dependent dielectric constant and mobile ions contribution to the 

electrostatic potential (natural environment for proteins is usually salty aquatic 

solution). Protein is considered a rigid body limited by solvent accessible surface [5]. 

In order to solve PBE on 3D grid (Fig. 1.) we use two computer programs DelPhi [6] 

and APBS [7]. 
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Fig. 1. Poisson-Boltzmann model of electrostatics 

2 Stochastic Roadmap Simulation  

Each node of a roadmap represents one conformation of a ligand. Formally, each 

conformation of n parameters is represented by a vector q. The set of all possible 

conformations forms the conformational space C. SRS assumes that the interactions 

are described by an energy function E(q), which depends only on the conformation q 

of the ligand. A pathway in C represents motion of the ligand around protein. A 

roadmap may be considered a directed graph G encoding many pathways in C. Each 

node of a roadmap is a randomly selected conformation q from C with associated 

energy E(q). Each directed edge between two nodes vi and vj has associated weight, 

which is equal to the probability of transition between the two nodes. In order to 

construct a roadmap the algorithm samples n conformations, randomly and 

independently from C. Then for each node vi one finds k nearest neighbors of that 

node according to selected metric (i.e. RMSD or Euclidean). After that a transition 

probability Pij is computed for every pair of neighboring nodes (Fig. 2.). Pij 

calculation is based on difference of energy: 
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where kB - Boltzmann constant, T - system temperature, Ni- number of neighbors of 

node. The self-transition probability is defined as:  
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which ensures that the transition probabilities from any node sum up to 1. 

3 The Time to Escape  

Although it is possible to perform a simulation on a roadmap, which corresponds to 

a discrete version of the standard Monte Carlo method (discretization is defined by a 

roadmap) Apaydin et al. [1] suggest that usually it is not needed to generate individual 

trajectories on a roadmap but rather evaluate a parameter of interest. Time to escape 

(expressed as a number of simulation steps) from the funnel of attraction around the 

protein binding site is given as an example. Apaydin et al. propose the escape time as 

a measure of affinity of a ligand to a putative binding site. The funnel of attraction Fi 

is defined as the set of conformations within 10 Å RMSD of the bound conformation 

(Fig. 3.). Expected value of the time to escape can be easily calculated using the first 

step analysis technique [1], from Markov chain theory [4] by solving the following 

system of equations [1]:  
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where τi– time to escape starting from i–th node, Fi– funnel of attraction around i–

th binding site, vi – i–th node. 

 

 
Fig. 2. Map building and assignment of transition probability 
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Fig. 3. Funnel of attraction around binding site 

4 Results and Discussion 

 

Fig. 4. Correlation between time to escape and experimental Ki obtained for PDBBind v2008 

CoreSet 
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We applied the approach described in the paper to enzyme-inhibitor complexes 

with experimentally determined affinity data deposited in the PDBBind v2008 

CoreSet [3]. The results show significant correlation between the computed mean 

time to escape and experimentally determined binding constant Ki. Pearson’s 

correlation coefficient R=0.41. 
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