
The integration of Clifford Algebra in
the iBP algorithm for the DMDGP

Rafael Alves1, Andrea Cassioli2, Antonio Mucherino3, Carlile Lavor1, Leo Liberti3

1 IMECC-UNICAMP, Campinas-SP, Brazil.
Email: rafaelsoalves@uol.com.br,clavor@ime.unicamp.br
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Finding protein conformations is a fundamental problem in biology. The confor-
mation of such molecules can help understanding the function they perform in living
organisms, and bring to important discoveries in biology, as well as in biomedicine.

The Molecular Distance Geometry Problem (MDGP) consists in finding the suitable
conformations for a certain molecule which satisfy a set of constraints based on some
distances between pairs of its atoms, provided by Nuclear Magnetic Resonance (NMR)
experiments [1, 5, 6]. When the distance information is given through a list of lower
and upper bounds on the distances, the problem is also referred to asinterval MDGP
(iMDGP) [5]. The iMDGP, by its nature, is a constraint satisfaction problem, which
is NP-hard [8]. Over the years, its solution has been attempted by formulating global
optimization problems in continuous spaces [6], where a penalty objective function is
generally employed in order to measure thesatisfaction of the distance constraints for
given molecular conformations. More recently, a new class ofiMDGP instances has
been introduced, where the search domain can be reduced to a discrete space having the
structure of a tree [2]. We refer to this class of problems as theinterval Discretizable
MDGP (iDMDGP).

We developed an exact algorithm namedinterval Branch & Prune (iBP) [3, 4] which
is potentially able to discover all solutions for a giveniDMDGP instance. The basic
idea is to build a tree of possible atomic positions for the atoms forming the molecule,
and to explore such a tree in an efficient way. Branch by branch, new atomic positions
are computed and added to the tree, while their feasibility is checked, and, in case of
infeasibilities, branches are removed from the tree and not explored. The pruning phase
of iBP allows to focus the searches on the branches of the tree where there are solutions
to the problem.

The tree of atomic positions, which is the search space foriBP, is constructed by
using discretization distances. When all of them are exact, each node of the tree refers to
one atomic position. When one of such discretization distances is instead represented
by an interval, a curve in the three-dimensional space can be associated to the tree
node. In fact, the intersection among two spheres (related to the two exact distances)
and one spherical shell (related to the inexact distance) provides, with probability 1, two
disjoint curves (see Figure 1). In this situation, in order to guarantee the discretization,
each curve can be replaced by a discrete set of points selected from the two curves, so
that only a prederminited number of possible atomic positions is considered [3].

While this strategy was proved to work in practice for relatively small-sized in-
stances, we could observe that the role played by the “predetermined number of pos-
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Fig. 1. The intersection among two spheres and one spherical shell
.

sible atomic positions” is extremely important. When too small, it may bring to the
identification of an empty set of solutions, because the whole tree is pruned. On the
other side, when it is too large, it could lead to a huge number of possible solutions,
where many pairs of conformations are very similar to each other.

For this reason, we are working on a methodology for considering the curves defined
by the intersections (all the points they contain, not only a discrete subset). To this
purpose, we are studying a way to apply Clifford Algebra [7, 9] for managing such
curves by their equations. This will help theiBP algorithm to identify a complete set
of representative solutions for all instances of theiDMDGP, as well as to study the
flexibility of the corresponding molecular conformations.
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