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Abstract. This paper  approaches the algorithm of selection of variables named 
MIFS-U and presents an alternative method for estimating entropy and mutual 
information, “measures” that constitute the base of this selection algorithm. 
This method has, for foundation, the Cauchy-Schwartz quadratic mutual infor-
mation and the Rényi quadratic entropy, combined, in the case of continuous 
variables, with Parzen Window density estimation. Experiments were accom-
plished with public domain data, being such method compared with the original 
MIFS-U algorithm, broadly used, that adopts the Shannon entropy definition 
and makes use, in the case of continuous variables, of the histogram density es-
timator. The results show small variations between the two methods, what sug-
gest a future investigation using a classifier, such as Neural Networks, to quali-
tatively evaluate these results, in the light of the final objective which is greater 
accuracy of  classification. 

1 Introduction 

Variable selection has a fundamental importance in classification systems, such as 
Neural Networks [1], [2], [3]. In this paper, the Mutual Information Variable  Selector 
under Uniform Information Distribution (MIFS-U) is focused [4]. The objective of 
this algorithm is to select variables that are relevant for the output variable and at the 
same time reduce the redundancy among input variables. It as the name indicates is 
based on concepts of Information Theory, namely, entropy and mutual information 
[5]. When the variables involved are discrete, the computation of entropy and mutual 
information, based on the Shannon definition, is simple and direct, since the joint and 
marginal distributions can be estimated simply by counting the samples.  However, 
when at least one of the variables in question is continuous, the computation that 
involves integration becomes difficult due to the limited number of samples. A solu-
tion is usually to insert  the discretization of the data as  a step of pre-processing, and 
to estimate the unknown density by the histogram. Not always, however, the discreti-
zation is made clearly and adequately. This paper shows a alternative method based 
on the Cauchy-Schwartz quadratic mutual information and the Rényi quadratic entro-
py, this combined with the Parzen Window density estimator [6], and in this way the 
computations become direct without need of a pre-processing step. Initially, this pa-
per shows  a introduction to information theory based on the Shannon and the Rényi 
entropies and additionally shows the Cauchy-Schwartz mutual information, concept 
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used  in Information-Theoretic Learning (ITL) [7], [8]. Next, the MIFS-U variable 
selector and the estimation methods of entropy and mutual information are shown. 
Finally, both methods are applied in datasets and the results are compared in order to 
obtain an initial notion of the performance of the proposed method. 

2 The FRn–k Problem and the  Ideal Selection Algorithm  

In the process of selecting input variables, it is desirable to reduce the number of 
variables by excluding irrelevant or redudant variables among the ones. This concept 
is formalized as selecting the most relevant k variables from a set of n variables and 
Battiti [2] named it as “feature reduction – FR ” problem. Such process is described 
as follows:  
[FRn – k]: Given an initial set of n variables, find the subset with k < n variables that 
is “maximally informative” about the class (output variable). The problem of select-
ing input variables can be solved by computing the mutual information (MI) between 
input variables and output classes. If the mutual information between input variables 
and output classes could be exactly obtained, the FRn – k problem could be reformu-
lated as follows: 
[FRn – k]: Given an initial set F with n variables and the output variable D, find the 
subset S  F with k variables that minimizes H(D|S), that is, that maximizes the mu-
tual information I(D;S). The selection method here adopted is known as "greedy 
selection". In this method, from the empty set of selected variables, the best input 
variable of the current state is added one by one. This ideal selection algorithm using 
mutual information is realized as follows:  

1) (Initialization)  set  F   “initial set of n variables”,   S  “empty set.” 
2) (Computation of the MI with the output class),  i  F , compute I(D;  i ). 
3) (Selection of the first variable) find the variable that maximizes I(D;  i), set  
F  F \{ i }, S  { i }. 
4) (Greedy selection) repeat until desired number of variables are selected: 

a) (Computation of the joint MI between variables),  i  F , com-
pute I(D;  i ,S). 

b) (Selection of the next variable) choose the variable  i  F that max-
imizes I(D;  i , S), and set F  F \ { i }, S { i }. 

5) Output the set S containing the selected variables. 
In practice, the realization  of  this algorithm is unviable due to the  high dimensional-
ity of the vector of variables in the computation of I(D;  i,S), since the objective is to 
select k (k<n) variables, and therefore the vector S (composed of the variables already 
selected), reaches dimension (k – 1). 

2.1 The MIFS-U  Variable Selector  

The ideal algorithm [2] tries to maximize ),;( siDI   (area II, III and IV in Figure 1) 

and, according to [4], this can be rewritten as 
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).|;();(),;( sissi DIDIDI                                               (1)  

Where )|;( siDI   represents the remaining mutual information between the output 

class D and the variable  i for a given s . This is shown as area III in Figure 1, 

whereas the area II plus area IV represents );( sDI  . Since );( sDI  is common for 

all the candidate variables to be selected in the ideal algorithm, there is no need to 
compute this. So the ideal algorithm tries to find the variable that maximizes 

)|;( siDI  (area III). However, calculating )|;( siDI   requires as much work as 

calculating I(D; i; s ). So )|;( siDI   is approximately computed with );( siI   

and );( iDI  , which are relatively easy to calculate. The conditional mutual infor-

mation can be represented as 

 ( ; | ) ( ; ) ( ; ) ( ; | )i s i i s i sI D I D I I D                                 (2)     

Where );( siI   corresponds to arera I and IV, and )|;( DI si   corresponds to area I. 

So the term )|;();( DII sisi    corresponds to area IV. The term  ( ; | )i sI D   

means the mutual information between the already selected variable s  and the can-

didate variable i  for a given class D. 

If conditioning by the class D does not change the ratio of the entropy of s  and the 

mutual information between i  and s , that is, if the following relations holds (con-

dition of the algorithm): 
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Using the equation above and Eq. (2), the following is obtained: 
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Fig. 1 – The relation between input variables and output classes 
 

Assuming that each region in Figure 1 corresponds to its corresponding information, 
the condition presented in Eq. (3) is hard to satisfied when information is concentrat-
ed on one of the following regions: ( | ; )s iH D  , ( ; | )s iI D  , ( ; | )s iI D    or 

( ; ; )
s i

I D   . It is more likely that condition (3) hods when information is distributed 

uniformly throughout the region of ( )sH   in Figure 1. Because of this, the algo-

rithm is simply called the MIFS-U algorithm. 
Then the revised step 4 of the ideal selection algorithm takes the following form: 

4) (Greedy selection) repeat until desired number of variables are select-
ed: 

a) (Computation of entropy)  Ss  , compute )( sH  , if is not al-

ready available. 
b) (Computation of the MI between variables), �for all couples of 

variables ( i,  s) with    i  F and  s  S, compute I( i;  s), if it is 
not yet available. 

c) (Selection of the next variable) choose a variable i   F that max-

imizes   );()(/);();( siS ssi
s

IHDIDI 
 

  and set 

 iFF \ ,  iS  . 

Parameter  offers flexibility to the algorithm as in the MIFS. If  = 0, the mutual 
information between input variables is not considered and the algorithm chooses 
input variables in the order of the mutual information with the output. As  grows 
aumenta, it excludes the redundant variables more efficiently.  In general   can be 
taken as 1 [6]. In this case there is a balance in terms of weight between the redun-
dancy of  the candidate variable and the mutual information between  this variable 
and the output. So, for all the experiments in this paper,  = 1 is adopted. 
Kwak & Choi [4] point out that the MIFS-U algorithm can be applied to large prob-
lems without excessive computational efforts. 

 
3 Estimation Methods of  Entropy and Mutual Information  
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3.1 Shannon / Histogram Method 

In the case of continuous variables, to avoid adopting a parametric model for the 
unknown density, a common solution  is to apply non-parametric density estimation 
methods. The oldest and the most widely used  density estimator is the histogram 
[10]. In this paper, the relative frequency histogram is actually used, not the density 
histogram, where the only difference is that the latter is normalized to integrate to 1 
[11].  
As all the continuous variables are normalized in the interval [-1, 1], the interval is 
simply divided into 20 subintervals of equal width (h = 0,1). Each subinterval is in-
terpreted as a class and each computed relative frequency is taken as a probability. In 
other words, a discretization – a continuous variable becomes discrete – is done. Then 
there are no more obstacle to the necessary computations, and the Shannon entropy 
definition, widely used in the literature, can be easily apllied. 

3.2 Cauchy-Schwartz / Parzen-Rosenblatt Method 

In the context of variable selection in nonlinear systems, the estimation of the mutual 
information between variables directly from the data, where at least one of them is 
continuous, without  hypotheses about the priori distribution of the data, has vital 
practical importance. This can be reached using the Cauchy-Schwartz divergence, 
which is a substitute of the Kullback-Leibler divergence [14], integrated with the 
Parzen Window estimator. 
The Kullback-Leibler divergence [14], based on the Shannon entropy, is, in its sim-
plicity, an usual measure of mutual information between two random variables. How-
ever, neither this nor the equivalent for the Rényi entropy can be integrated with the 
Parzen Window estimator [8]. Xu et al. [12] presented a method that combines the 
Cauchy-Schwartz Divergence with Parzen Windowing for estimating the mutual 
information directly from the data. 
Further details of the calculations required in this process can be found in the work of 
Gonçalves & Macrini [16]. 

 
4 Experiments  
The databases were extracted from the UCI Machine Learning Repository 
(http://archive.ics.uci.edu/ml/datasets.html). 
It is not in the scope of this study a specific analysis of the databases, since the use of 
the databases considered here has in view the mere comparison of the results regard-
ing the selection order by the MIFS-U algorithm, considering the two estimation 
methods of entropy and mutual information presented in this paper. 

 
Table 1 – Databases 

Databases n Number of Variables 
Discrete Continu-

ous 
ECHOCARDIOGRAM    
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Echocardiogram Data 61 3 8 
BREAST CANCER  

Wisconsin Diagnostic Breast Cancer 
 

569 
 

0 
 

30 
4.2 Comparison of the Methods  

 
The comparison of the results of the selection by the MIFS-U, regarding both estima-
tion methods of entropy and mutual information presented in this paper, is shown in 
following tables. The values are normalized to 1. The analysis focuses the first five 
selected variables. For simplification, the Shannon / Histogram and Cauchy-Schwartz 
/ Parzen-Rosenblatt Methods will be respectively designated by the acronym SH and 
CSPR.. It is worth to emphasize that the comments are based on the simple observa-
tion. For a more detailed analysis, it would be necessary the application of a classifier 
in order to investigate the accuracy of classification regarding both groups of selected 
variables by the MIFS-U. 

Table 2 – Comparative Result of the Selection 
 by the MIFS-U - ECHOCARDIOGRAM 

ECHOCARDIOGRAM  Database   

O
r-

de
r

SH Method  CSPR Method  
Va

r. 
MI with 

Output 
Var. MI with 

Output 

1
st 

4 1.0000 4 1.0000 

2
nd 

1 0.7424 1 0.8705 

3
rd 

2 0.0275 10 0.2123 

4
th 

3 0.0258 5 0.1324 

5
th 

10 0.2963 9 0.1246 

 
Regarding the ECHOCARDIOGRAM database (Table 2), the selection made by the 
MIFS-U using the two methods leads to two similar sets of selected variables. Three 
among the first five variables selected by the algorithm are exactly the same. It is 
noteworthy that the possibility exists that the variables 2 and 3 selected using the SH 
method have contribution for the output similar to the one of the variables 5 and 9 
selected using the CSPR method. In practical terms, it would mean that in principle 
the permutation of these subsets in the set of selected variables would have little in-
fluence on the result (that is, the classification) that must be ascertained by applica-
tion of a classifier.  

Table 3 – Comparative Result of the Selection 
 by the MIFS-U -   BREAST CANCER 

Database  BREAST CANCER 

r SH Method CSPR Method 
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Va
r. 

MI with 
Output 

Var. MI with 
Output 

1
st 

23 1.0000 28 1.0000 

2
nd 

28 0.9520 23 0.8659 

3
rd 

14 0.6463 20 0.0843 

4
th 

17 0.2722 12 0.0268 

5
th 

2 0.2969 29 0.1648 

 
Regarding the BREAST CANCER database (Table 3), the variables 23 and 28, alt-
hough in inverted order, were the first variables selected by the MIFS-U using both 
methods. It can be still observed that the other three variables, in relation to both 
methods, except the variable 14 in the SH case, have very low mutual information 
with the output, indicating probably a particular contribution of these variables.  

 
5. Final Remarks  

 
Variable selection is a fundamental problem in several areas of knowledge. All the 
variables may be important within a given context , but for a particular concept, only 
a small subset of variables is usually  relevant. Besides, variable   selection increases 
the intelligibility  of a model, while reducing the dimensionality and  the need for 
storage space. Several experimental studies have shown that irrelevant and redundant 
variables can drastically reduce the predictive accuracy of models built from data. In 
this paper, the Mutual Information Variable Selector under Uniform Information 
Distribution (MIFS-U) was approached. This algorithm, as was shown, involves the 
computation of entropy and mutual information regarding discrete and continuous 
variables. In the first case, the computation is straightforward, but for continuous 
variables, there are inevitable integrals in all the definitions of entropy and mutual 
information, which are the major difficulty after the density estimation. Therefore the 
density estimation and measures of entropy and mutual information should be chosen 
appropriately so that the corresponding integrals can be simplified. It was shown how 
the Rényi quadratic entropy and the Cauchy-Schwartz quadratic mutual information, 
instead of the Shannon entropy and Shannon mutual information, can be combined 
with the Gaussian kernel function to estimate densities, resulting in an effective and 
general method for computing entropy and mutual information, without requiring any 
hypothesis about the unknown density – in almost all real world problems, the only 
information available is contained in the data collected. It should be always kept in 
mind that the process of variables selection must be as accurate as possible, but with-
out losing its simplicity. In practice, simplicity becomes a paramount consideration. If 
such process involves complex techniques, it ends up becoming a problem in itself, 
rather than being a facilitator for a later stage of classification, through, for example, 
learning of an Artificial Neural Network (ANN). 
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Experiments were conducted, comparing the Cauchy-Schwartz/Parzen-Rosenblatt  
method (CSPR), presented in this paper, with the Shannon/Histogram method (SH), 
widely used, based on the Shannon entropy definition and that uses the discretization 
of continuous variables as a step of pre-processing of the data. The results, focusing 
on the set of the first five selected variables, were similar. As the comparison was 
purely speculative, a more careful analysis  must be realized  by applying a classifier 
(or more than one), so that the methods can be compared through the effective per-
formance of the sets of selected variables by the MIFS-U algorithm. Besides, it is 
strongly recommended the participation of a professional in the field of knowledge 
concerning the databases covered in this paper, as it would certainly allow a better 
evaluation of  the methods. Lastly, the CSPR method works directly with the data, 
providing, theoretically, greater accuracy. On the other hand, the SH method – that   
uses the discretization, which in principle could mask some relevant “information” 
from the data – is  simpler, which explains its widespread use. 
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