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Abstract. Assisting drug repositioning processes can lead to a consi-
derable reduction in cost and time in any drug development process.
Recent in silico approaches have addressed the network-based nature of
biological information to assess the possible new indications for a query
drug. Here we present a new methodology based on network prioritiza-
tion, that can aid researchers in the drug repositioning process by means
of prioritizing drugs related to a query disease. Results show that selec-
tion of the data sources to be integrated can be a critical step towards
success in drug repositioning.
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1 Introduction

Developing a new drug is a risky process, now estimated to last about 15 years
and cost between $800 million and $1 billion [1]. This amount can be considerably
reduced if an already commercialized drug is used for new indications. This task
is known as drug repositioning, and there are several classic examples of large
benefits produced by a successful drug repositioning, such as Viagra or Minoxidil
[2].

In order to reduce time and resources needed for drug development, some
efforts have been made for in silico drug repositioning (for a review, see [1]).
These could be encompassed in two main categories: those focused on compo-
sition, chemical or molecular features of drugs, and those based on knowledge
about diseases, their underlying processes or their symptomatology. Regarding
the first category, methods may relate drugs based on quantitative chemical
measures from both drugs and targets [3, 4].

On the other hand, disease-focused proposals try to relate drugs and dis-
eases based on symptomatology, known treatments or pathological information.
This category includes approaches such as Chiang and Butte’s application of
the ’Guilt-by-association’ principle [5], which assumes that two diseases are re-
lated when a similar treatment is prescribed for both (i.e. prescriptions share
a considerable subset of drugs). Approaches like Promiscuous [6] take into ac-
count side-effects information to relate drugs and diseases. Both diseases and
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side-effects imply certain symptomatology or underlying biological activity, and
their phenotypic expressions are usually similar. However, same phenotypic ex-
pression might have different possible underlying causes.

Nonetheless, relations between biological entities are complex and mostly
network-structured, and it is not yet clear which among these approaches is
best, if any [7]. Symptomatology-based approaches seem to suit better when
there is a lack of knowledge about the molecular processes underlying the query
disease. On the other hand, molecular-based proposals should be used when
there is expertise in certain target’s chemical behaviour. Integrating several data
sources seems a solution. However, certain sources such as expression data or
pathway information are yet scarce or difficult to obtain. Data integration should
be done carefully, since redundant, contradictory or vague information could
lead to poor results. Consequently, best data source configuration appears to be
disease-dependent. Therefore, deciding which sources of data should be analysed
in advance is a difficult task.

In this work, we propose a new methodology for drug repositioning based
on networks prioritization. Different possible configurations of data sources are
studied in order to test its performance prioritizing diseases against sets of drugs.
Results show that integrating only adequate knowledge for drug repositioning
can draw promising results while using other types of data such as pathways,
although promising, is not efective since they are not yet sufficiently mature to
be used in the process of prioritization.

2 Methodology

We have applied ProphNet [8] to prioritize drugs and diseases. ProphNet is a
general network-based prioritization tool which has shown excellent results for
gene-disease prioritization in previous works [8].To apply ProphNet to drug repo-
sitioning, we first need to define and build the data networks the algorithm is
applied to. This representation considers one network for each type of entity
(e.g. one network modelling gene-gene interactions, one for drug interactions,
etc.). Each network node v represents a biological entity (e.g., drug or disease)
labelled with a value Ψ(v). Nodes in networks are connected by weighted arcs
representing an interaction or relationship between the connected pair of nodes.
There are two types of networks: networks which represent relations or inter-
actions between elements from the same domain and networks which represent
relations or interactions between elements from two different domains. Network
connections are represented as adjacency matrices. Each adjacency matrix A is
normalized as

Anorm = D1
G ∗A ∗D2

G,

where D1
G and D2

G are diagonal matrices where each component is defined as

D1
Gjj

= 1/
√

(
∑c

k=1 Ajk) j = 1, .., r

D2
Gkk

= 1/
√

(
∑r

j=1 Ajk) k = 1, .., c.
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These networks are used to build a Global Graph which is a network con-
taining all other previously defined networks. Our goal is to measure the degree
of relation between two sets of nodes (called Query Set and Target Set, respec-
tively) from two different networks (called Query Network and Target Network,
respectively). The Query Set Q is provided by the user as input (e.g. a set of
drugs or diseases of interest) while the Target Set T is iteratively established by
ProphNet (to find out the most strongly related diseases or drugs, respectively).
Nodes in Q are initially set to: Ψ(v) = 1/|Q| ∀v ∈ Q and all the nodes v from T

are initially set to: Ψ(v) = 1. The rest of the nodes are set to zero.
We define a path connecting the Query Network and the Target Network

as a path of networks (not a path of nodes) which allows to get from Q to
T . Two propagation operations are defined: “propagation within a network”
and “network-to-network propagation”. First operation allows to propagate node
values within a specified network using the Propagation Flow algorithm [9, 10].
This algorithm is performed by iteratively applying

xi+1 = (1− α) ∗M ∗ xi + α ∗ x0,

where α is a parameter which determines the importance of the prior information
in the network, M is the normalized adjacency matrix of the network and xi is
a vector representing network node values at iteration i. The second operation
allows to propagate values from the current network to the following network
in the path by assigning to each node v from the following network a value
computed as

Ψ(v) =

∑x∈neig(v)
Ψ(x)

|neig(v)|
,

where neig(v) is the set of nodes from the current network which are connected
with node v in the following network.

Initially, node values in the Query Set are propagated within the Query
Network using the “propagation within network” operation. The same process
is performed in the Target Network to propagate values from the Target Set
nodes. Then, for all the possible paths from the Query Network to the Target
network, values are propagated using the two mentioned operations alternatively
until all the networks adjacent to the Target Network are reached. Finally, vec-
tors representing adjacent networks’ node values for each path are multiplied by
the normalized adjacency matrix of the network connecting the adjacent net-
work with the target network and the resulting vectors are correlated simultane-
ously with a vector representing the Target Network node values (using Pearson
Correlation). To perform this correlation simultaneously, resulting vectors are
concatenated in only one vector and are correlated with a vector obtained by
concatenating a vector representing Target Network node values as many times
as the number of paths. The computed correlation value is used as a score to
determine the degree of relationship between the Query and Target sets.

In order to score each entity in the Target Network according to the degree of
relationship to the Query Set, each node from the Target Network is iteratively
set as Target Set and its score is computed using the method described above.
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Finally, prioritized lists are obtained by sorting all the target node scores in
decreasing order.

Since our method can be used with different network configurations, we have
tested ProphNet with different global graph options to select the best configura-
tion for drug repositioning (see Results). Three options have been considered (see
Figure 1). Finally, a validation test using the best configuration has been per-
formed to prioritize clinical trials obtained from ClinicalTrials.gov as described
in Materials.

3 Materials

The disease phenotype network has been derived from the Online Mendelian In-
heritance in Man database (OMIM,[11]) using text-mining as described by [12].
A profile has been created for each phenotype by counting the number of ap-
pearances of some MeSH vocabulary terms. Cosine distance has been computed
for each phenotype pair to build an interconnected network of diseases. Finally,
only the strongest relations are maintained. 5080 disease phenotypes with 39458
weighted relations were extracted.

The drug network has been extracted from DrugBank [13]. Two drugs are
connected by an arc in the network if at least one interaction between them is
found in DrugBank. Only drugs with at least one interaction are considered,
obtaining 1109 unique drugs connected by 10906 interactions.

The protein domain network has been derived from DOMINE [14] and Inter-
Dom [15] revealing 48778 unique relations between 5490 protein domains. 1614
protein domain-drug relations were extracted from Pfam [16] and from annota-
tions of nsSNPs in the UniProt database [17].

The protein (gene) network was obtained from Human Protein Reference
Database (HPRD,[18]). This protein-protein interaction network contains 64662
unique interactions between 8919 proteins. The drug-protein interactions were
also extracted from DrugBank (2860 interactions). Gene-disease relations were
directly extracted from OMIM (1393 relations). Finally, gene-protein domain
relationships were extracted from Pfam entries.

The drug-disease network has been computed by mapping disease names to
UMLS concepts and matching these with drugs indications from DailyMed as
described by [3]. 1337 drug-disease relations were obtained.

Clinical trials data were extracted from ClinicalTrials.gov. Only clinical trials
with drugs and diseases in our datasets were considered, obtaining 1632 drug-
disease relations under study. The phase for each clinical trial was also obtained.
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Fig. 1. Tested networks configurations.

4 Results and Discussion

Validation tests were applied in order to select the best network configuration
and measure the performance of our approach. First, a leave-one-out (LOO) test
was performed for each global graph configuration obtaining its performance. Af-
ter selecting the best configuration, a test using this configuration was performed
to prioritize relations obtained from clinical trials.

4.1 Best network configuration tests

Leave-one-out validations were performed to determine the best data sources for
the drug repositioning task. LOO tests consists of 1337 test cases (one for each
explicit drug-disease relationship in the global graph). A leave-one-out priori-
tization was performed for each test case by removing one known drug-disease
relation, taking the drug as query set and checking the resultant disease ranking
to measure performance. Receiver operating characteristic (ROC) curves have
been plotted for each LOO validation test. A ROC curve is created by plotting
the fraction of true positives out of the positives vs. the fraction of false positives
out of the negatives at various threshold settings. A true positive occurs when
the rank of the case disease is below the threshold. A false positive occurs when a
disease that is not in the case is ranked below the threshold. The area under the
ROC curve (AUC value) was also computed to quantify gains. Finally, the mean
ranking position of the query disease in the prioritized lists obtained for each
test case was also computed and normalized by dividing by the total number of
elements in the list (5080 diseases).
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Fig. 2. ROC curves for different data source combinations.

We measured the accuracy of the ranking for three different data configu-
rations (Figure 2). The tests with all the data sources obtained a 0.9564 AUC
value and 223 ± 566 mean ranking. Tests with only drug-protein-disease net-
works obtained a 0.695 AUC value and 1550 ± 1370 mean ranking. Tests with
only disease-drug networks obtained a 0.9738 AUC value and 134 ± 438 mean
ranking. Therefore, our method achieves the best performance in drug reposi-
tioning when only disease-drugs relationships are considered.

4.2 Clinical trials validation test

To validate the results obtained by the best network configuration for drug
repositioning in real cases, we applied Prophnet on this ”Drug-Disease only”
network to prioritize relations derived of clinical trials from ClinicalTrials.gov
as described in Materials. Drug-disease relations from these clinical trials were
removed from our global network if already explicitly present in our data in
order to perform a blind prioritization. A 0.9288 AUC value was obtained for
the whole dataset, proving the high performance of this approach in real cases.

Table 1 summarizes the results obtained. Drugs in earlier stages of clinical
trials have a high risk of failure due to toxicity or lack of efficacy. As can be seen
in the table, results are better for clinical trials in more advanced phases. There-
fore, suggested drugs repositioned by our approach are more likely to succeed.
Although the coverage in each stage may seem low, our approach successfully
predicts almost one out of four clinical studies in their last stage of development.
Predictions made are therefore reliable and have the potential to reduce costs
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considerably, thus we consider they may be of interest to the pharmacological
industry.

Clinical trials phase Case count AUC % in Top 20

N/A 267 0.9067 18.73

Phase 0 9 0.9532 11.11

Phase 1 144 0.9347 9.03

Phase 2 495 0.9429 9.29

Phase 3 377 0.9165 18.30

Phase 4 340 0.9363 24.12

All phases 1632 0.9288 15.99

Table 1. Results obtained for drug-disease prioritization of clinical trials recently per-
formed or currently under development. First column shows the phase of the study,
second column the number of studies in this phase, third column AUC value obtained
and fourth column the percentage of cases ranked in top 20.

5 Conclusions

A new methodology for in silico drug repositioning has been presented in this
work. We have based our approach in two main ideas. Firstly, biological entities
interact with each other in a networked, intricate way. Consequently, any ele-
ment should be observed as a connected entity interacting with its environment,
rather than as an isolated element. Furthermore, biological information is di-
verse and growing. Our data source study has shown that data sources selection
and configuration can be a critical step, since redundant or vague information
can deteriorate otherwise good results. Eventually, the simplest and most re-
duced data source selection, taking into account only diseases and drugs, and
the known interactions between them, was the one drawing better results, and
therefore the one best suited for drug repositioning.

Results have shown that this approach can elucidate unknown drug applica-
tions with a high level of confidence in real situations, therefore these methods
may potentially save a large amount of resources in the drug development pro-
cess.
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