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Abstract. Biochemical reactions are often modelled as discrete-state continuous-
time stochastic processes evolving as memoryless Markov processes. However, in
some cases, biochemical systems exhibit non-Markovian dynamics. We propose
a methodology for building stochastic simulation algorithms which model accu-
rately non-Markovian processes in some specific situations. Our methodology is
based on and implemented in Concurrent Constraint Programming (CCP). Our
technique allows us to randomly sample waiting times from probability density
functions (PDFs) not necessarily distributed according to a negative exponen-
tial function. In this context, we discuss an important case-study in which the
PDF for waiting times is inferred from single-molecule experiments. We show
that, by relying on our methodology, it is possible to obtain accurate models of
enzymatic reactions that, in specific cases, fit experimental data better than the
corresponding markovian models.

1 Introduction

Recently there has been a significant interest in discrete stochastic (DS) models of bi-
ological systems since experimental data have shown that stochasticity arising at the
molecular level plays an important role in determining the overall behaviour of living
organisms [1, 13]. Gillespie’s Stochastic Simulation Algorithm (SSA) [6], based on [2]
and [11], is the most widespread algorithm used for implementing DS simulations of
biological systems. Gillespie’s SSA requires that some hypotheses are satisfied, namely
solutions are well stirred and in termal equilibrium and, more importantly, it holds only
for elementary chemical reactions i.e. those reactions occurring in one reactive event.
Even though it has ben shown that the SSA can work besides the prescribed scope of
applicability as proved by the success of various stochastic models against experimen-
tal data (see e.g.[14, 7, 15]), it is difficult to describe biochemical systems in terms of
elementary reactions: often there is an incomplete knowledge of the full set of elemen-
tary reactions and mesoscopic or macroscopic transformations are the only observable
ones. Most commonly this problem is circumvented abstracting away the not observ-
able elementary steps lumping them in a single reaction event, modelled as a single
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“Markov jump” with the waiting time τ sampled from a negative exponential distri-
bution depending on an overall rate constant. However abstractions usually introduce
approximations in the behaviour of the models whose impact is not easy to evaluate
or estimate, as noticed by Gillespie in [15] for enzymatically catalysed reactions. One
crucial point in this abstraction approach concerns the modelling of the time needed for
a reaction to occur. Indeed, even though the elementary reactions underlying a given
biochemical process can be modelled as a DC Markov process (and, thus, with waiting
times distributed according to a negative exponential PDF) on a mesoscopic or macro-
scopic scale the process may exhibit non-Markovian behaviours. This fact is highlighted
also in [12] and [5] and shown by various experimental evidences, e.g. [18, 17]. These
arguments suggest the need for modelling approaches embedding a more general no-
tion of transition times, possibly allowing to manage non-memoryless (non-Markovian)
system’s evolution. In terms of waiting times, this corresponds to consider frameworks
in which transitions times can be non necessarily exponential. Various approaches have
been proposed for addressing this issue. BioPEPAd [5] allows to add deterministic de-
lays to the duration of a reaction. The work in [9] proposes an extension for process
calculi allowing to express activity durations through general probability distributions.
A similar approach is proposed in [4] for extending Petri Nets. Furthermore, in [12]
the authors improved the Beta Workbench (BWB) framework with the possibility of
computing waiting times according to PDFs different from the negative exponential,
such as the Erlang, or Hyperexponential trying to obtain better matches with observed
non-markovian biological behaviours.
In this work we present a constraint programming (CP) approach to embed MC al-
gorithms for discrete-state continuous-time stochastic simulation of biochemical re-
actions. In our approach, waiting times can be sampled according to PDFs that non
necessarily follow a negative exponential PDF thus allowing to model non-markovian
processes. More precisely, our approach allows us to consider (1) general continuous
PDFs for waiting times such as Erlang, Hypoexponential or Hyperexponential as in
[12]; and (2) case-specific PDFs such as those inferred from experiments. To highlight
this last feature, we discuss a case study represented by the simulation of enzymatically
catalysed reactions. We use our method for sampling waiting times from a PDF derived
from wet-lab experiments and we provide a stochastic simulation method that results
to be more accurate than the corresponding Markovian approach. The contribution of
this paper is hence twofold: on the one hand we propose a general method for building
discrete-state continuous time non-markovian simulations; on the other hand we present
a case-specific application of our method discussing the differences with respect to the
simulations obtained using Gillespie’s SSA.

2 The CP Approach for simulating sampling waiting times

In this section we present our simulation method, based on a CP approach. We first
review the computational framework, then we show how to model and simulate network
of reactions. Finally, we discuss a relevant case study.
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2.1 The computational framework

The crucial step of the Inverse Transform Sampling (ITS) technique is the solution of
the equation F (τ) = r, where F (τ) is the cumulative function calculated from the
PDF f(τ) and r is a random number generated by the computer. In order to compute
a solution for the equation F (τ) = r, we use the XRI library (http://home.gna.
org/xrilpoz/), an implementation of a real interval constraint system. Constraint
systems are at the heart of Constraint Logic Programming [16] where problems are
solved declaratively: one states the problem and a Search Engine searches automat-
ically for a solution. The XRI library implements efficient techniques such as Hull,
Box and kB-Consistency ([3],[10]) for solving sets of numerical constraints. The ad-
vantage of this technique with respect to classical numerical methods is that: 1) no
initial parameters for iteration are required; 2) interval arithmetic allows us to bound
numeric errors since real numbers are represented by means of intervals instead of
single floating-point numbers; and 3) constraints represent relations on the variables
rather than assignments to values. Hence, by using the XRI on top of the Mozart sys-
tem (http://www.mozart-oz.org/), we can impose the constraint F (τ) = r
and we are able to both determining r given a τ and computing τ given some random
number r. This is a very general method that can be applied to all continuous PDFs.
Indeed we can easily obtain correct random samples from general PDFs such as Erlang,
Gamma and Hyperexponential distributions and we are able to correctly reproduce all
the results presented in [12].

2.2 Simulating network of reactions: a toy example

Now we show how our method can be used to simulate networks of biochemical reac-
tions. Noticeably our technique allows to build stochastic models of systems composed
by set of reactions not necessarily characterised by a unique PDF for waiting times.
This feature can be illustrated through a simple example where two different PDFs are
used to sample the duration of the reactions. The procedure we follow is:

1. We sample a τi for each reaction.
2. We choose the smallest τi (i.e., the fastest reaction).
3. We change the concentration of the species according to the chosen reaction.

Example 1 (A simple Network). Consider the set of reactions:

(1) A→ B (2) A→ C

Reaction (1) follows the PDF in Equation 1 and τ in Reaction (2) is sampled from the
exponential PDF:

F (τ) = 10[S]e−[S]x

The output of the simulation is depicted in Figure 1.
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Fig. 1. A simple network of reactions: (1) A → B, (2) A → C. PDFs and parameters are
described in Example 1.

2.3 Single molecules enzymatic reactions: a case study

Noticeably our technique works also for PDFs inferred from experiments. To show
this feature we present a specific case-study regarding wet-lab experiments on single
molecules of enzymes. In these experiments, it was measured the waiting time between
a reaction and the following one [17]. In the studied cases, τ resulted to be distributed
according to the following probability density function:

f(τ) = k1k2[S]
2A

[
e(A+B)τ − e(B−A)τ

]
A =

√
(k1[S]+k−1+k2)2

4 − k1k2[S] B = −(k1[S]+k−1+k2)
2

(1)

where [S] is the substrate concentration and k1, k−1, k2 are kinetic constants. It is worth
noticing that this equation is very different from the negative exponential PDF for wait-
ing times proposed by Gillespie. This suggests that a markovian approach may be not
adequate to simulate the biochemical reactions catalysed by enzymes.

The solution of Equation (1), in the Constraint Programming approach, amounts to
declare XRI variables for r, τ, A and B and then, to impose the necessary constraints
restricting the values the variables can take as depicted in the code of Figure 2. Hence
the search engines looks for the values (intervals) for the variables that satisfy the above
constraints (i.e., a solution for the set of equations). The results are depicted in Figure
3 and they show that the sampled data are distributed accordingly to the target PDF
(Equation 1) as demonstrated also by a goodness of fit tests. The sampled waiting times
can be used in the context of the algorithm presented in subsection 2.2 allowing accurate
simulations of network of enzymatically catalysed reactions.

2.4 Comparing Markovian and non Markovian simulations

The problem of the approximation introduced in using Markovian models for describing
non-Markovian phenomena is well known in physics as discussed, e.g., in [8]. In this
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{XRI.hc4 eq(A sqrt(sub(divide(
pow(plus(times(K1 S) K2 K3) 2.0) 4.0)
times(K1 K2 S) )) )}

{XRI.hc4 eq(B divide(
times(-1.0 plus(times(K1 S) K3 K2)) 2.0) )}

{XRI.hc4 eq(ALPHA divide(times(K1 K2 S) times(2.0 A)))}

{XRI.hc4 eq(BETA plus(A B))}

{XRI.hc4 eq(GAMMA sub(B A))}

{XRI.hc4
eq(R

sub(
times(ALPHA sub(

divide(pow(E times(BETA TAU)) BETA)
divide(pow(E times(GAMMA TAU)) GAMMA) ))

times(ALPHA sub(
divide(1.0 BETA)
divide(1.0 GAMMA) )) ) )}

Fig. 2. XRI Constraints to solve r = F (τ) in the Equation (1). We use the subexpressions
ALPHA,BETA and GAMMA to ease readability in the expression R = F(TAU)

subsection we will address this issue for a biological scenario. To this aim we consider
the well known Michaelis-Menten reaction scheme for enzymatic reactions:

E + S
k1

GGGGGGBFGGGGGG

k−1

ES
k2

GGGAE + P (2)

where S and P indicates the substrate and product molecules respectively, while E
represent the enzyme molecule and ES the enzyme-substrate complex.

In particular we analyse the differences emerging in describing reaction set (2)
through two different discrete stochastic models. In one case, we use an approach à
la Gillespie, lumping the reaction scheme (2) into one S → P reaction. This reac-
tion is seen as a single Markov jump having the waiting time distributed accordingly
to a negative exponential PDF with propensity a = v calculated through Equation (3).
Here v is the rate of product formation, [S] the substrate concentration and KM the
Michaelis-Menten constant (see e.g., [15]).

v =
k2[S]

[S] +KM
(3)

In the other case, we reduce reaction scheme (2) to a single S → P reaction but
the waiting time of the process is calculated (using our CCP based method) according
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(a) A1 (k−1 = 0s−1) (b) A2 (k−1 = 50s−1)

Fig. 3. Histograms represent the occurrences of τ obtained using our method. The continuous line
represents the plot of (1) calculated using a specific set of parameters.

to Equation (1) , thus obtaining a non-markovian model. As previously noticed, exper-
imental evidences provided by studies on single molecules suggest that the occurrence
of a reaction catalysed by enzymes when observed at the mesoscopic level (i.e as a
single S → P reaction) exhibit non-markovian dynamics. Our aim here is to evaluate
the impact of the approximation introduced by simulating single-molecule enzymatic
reactions as a Markov process through the Gillespie’s SSA. To do this, we first compare
the trend of the two PDFs for waiting times (the negative exponential with propensity a
and Equation (1)) when the initial amount of S (S0), k1, k−1 and k2 are varied. As high-
lighted by figures 4(a) and 4(b) it can be noticed that the differences between the two
PDF regard mainly the low values of waiting times: accordingly to the negative expo-
nential PDF waiting times close to zero have higher values of P (τ), while accordingly
to the PDF in equation (1) the higher values for P (τ) are not close to zero. Noticeably
these differences are greater when S0 is low and when k−1 is significantly minor than
k2. This implies that, with respect to the experimental findings on single molecule en-
zymatic reactions, the Markovian approach introduces more approximation when the
modelled system is composed by a low number of reactants and when the kinetic char-
acteristics of the enzymatic reaction (i.e. various combinations of the values of k1, k−1

and k2) prevent the system to reach quickly the steady state. To study the impact of
the differences amongst PDFs on the dynamics of the system, we simulated the occur-
rence of single-enzyme catalysed reactions as single S → P Markov or non-Markov
jumps. We compared the obtained results with the outputs of simulations performed
describing reaction set (2) through the Gillespie’s SSA specifying each single step (call
it full model). As proposed in [15], given the correctness of the Gillespie’s SSA, the
full model can be used as a convenient benchmark for evaluating the precision of sim-
ulations against the Michaelis-Menten model. As it can be noticed observing Figure 5
(and confirmed by Pearson’s test) the results of our simulations fit the full model signif-
icantly better than the corresponding markovian approach. Thus, our technique allows
to describe the considered enzymatic reaction as a single S → P step with an accuracy
comparable to that of the full model providing a safe technique for model reduction.

IWBBIO 2013. Proceedings Granada, 18-20 March, 2013 542



Stochastic Modelling of non Markovian Dynamics in Biochemical Reactions 7

(a) [S] vs. v (b) [S] vs. 1
<τ>

Fig. 4. Plots of the negative-exponential PDF (red) and the PDF according to equation (1) (green).
The plots on the left is obtained with low S0 and with k−1 << k2 while the plot on the right with
higher S0 and k2 > k−1.

Fig. 5. Plots of number of product molecules vs. time obtained simulating a single molecule reac-
tion through a Markovian (green) or non-Markovian (red) single jump. The blue plot is obtained
decribing the corresponding full model.

3 Concluding remarks

In this paper we presented a novel technique for the stochastic simulation of biochem-
ical reactions. The core of our proposal is a CCP based algorithm that allow to rely on
a Monte Carlo method for sampling waiting times from continuous PDF in general. In
this way it is possible to simulate also stochastic processes with memory, thus enabling
accurate descriptions of non-Markovian phenomena that can be observed in nature. No-
ticeably the possibility of dealing with all continuous PDF, allow to build models using
straightforwardly experimentally measured waiting times with no need of reproducing
observed dynamics by tuning model parameters.

We applied our method to a case-study regarding reactions catalysed by single en-
zyme molecules. We showed that this method takes some advantages on the correspond-
ing markovian approach. In particular it turned to be more accurate expecially in those
cases characterised by a low number of molecules and by dynamics that makes the
steady-state not quickly reachable.
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Finally it is important to point out that at least for the cases that we tested, the time
requested for computing simulations is similar to that needed by Gillespie’s SSA.
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