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Abstract. We study a potentially useful methodology based on machine 
learning (ML) involving integration of separate biomarker classes, to improve 
prediction and separation of ovarian cancer survival times. We also imported 
intermediate survival information for separating extreme two groups. For 
prediction of survival phenotypes, we use four classifiers, first two existing 
machine learning methods (support vector machine, SVM; random forest, RF), 
the second a new regression-based method (REG) feature selection together 
with Cox proportional hazards model (FSCR), FSCR_REG, the third SVM-
based classifier using FSCR data sets (FSCR_SVM). We compared these four 
methods using three types of cancer tissue features: i) miRNA expression, ii) 
mRNA expression, and iii) integrated miRNA and mRNA expression 
information, the latter with features selected separately from miRNAs and 
mRNAs profiles. The accuracies of survival classification using the combined 
miRNA/mRNA profiles are higher than those using miRNA or mRNA alone .  
The latter differences indicate sometimes strong interactions between miRNA 
and mRNA features which are not visible in individual analyses. 

1 Introduction 

Ovarian cancer is the fifth leading cause of death from gynecological malignancy in 
the United States and Western Europe [1], [2], [3].  The typically advanced stages of 
ovarian cancer at initial diagnosis have been a large contributing factor to the high 
mortality rate of this disease [2], [3]. According to cancer statistics, 75% of patients 
with ovarian cancer are commonly diagnosed at an advanced stage, for which the 5 
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year survival rate is only 5% to 30%, with an average survival time of 21 months [1], 
[4]. On the other hand, among patients diagnosed early, the 5 year survival rate 
exceeds 90% [1].  

Many studies have been proposed suggesting better-performing molecular data for 
cancer-related classification to stratify patients for treatments [5], [6], [7] but there 
still remain a number of unresolved questions about their mutual relationship. On the 
other hands, the accuracy of classification based only on miRNA expression, which 
Lu [5] presented, was better than that based on mRNA. In contrast, using the same 
dataset, Peng [6] suggested that the result using mRNA is superior to that using 
miRNA for the same cancer classification problem. Regarding to this, we study three 
cancer data sets for prediction of survival time with: (1) use of mRNA expression 
profiles only, (2) use of miRNA expression profiles only and (3) use of both mRNA 
and miRNA gene expression profiles.  In all three cases we assessed the quality of 
these features as predictors of phenotypes, in this case patient survival times.  We 
have implemented two different methods to integrate information for predicting 
cancer survival times, for the above three data types.  The first is a well-known 
classification algorithm, the support vector machine (SVM) [8], and random forest 
(RF) [9] based on a discretization of survival times (into two classes), while the 
second is a regression-based algorithm using feature selection with Cox proportional 
hazards model [10] denoted FSCR, and a SVM-based algorithm with FSCR based on 
continuous survival information.  Our approaches for predicting survival times use 
machine learning protocols, which allow transparent combinations of the information 
types, miRNA and mRNA profiles. In principle, the integration of molecular 
information types in ML can be done using the standard machine learning method of 
kernel addition, with no limitation of number of data types.  This means taking kernel 
matrices representing multiple data sources (e.g. mRNA and miRNA profiles), and 
adding their kernels to represent combined information.  For biomarker-based 
prediction, kernel addition is a simple modular method for integrating different 
information sources for predicting cancer phenotypes. 

2 Materials and Methods 

2.1 Materials 

All data were obtained from The Cancer Genome Atlas (TCGA available at 
http://cancergenome.nih.gov/), a source of standardized and comprehensive 
cancer data sets. We downloaded second updated gene expression data 
(AgilentG4502A ) and miRNA expression data (Agilent miRNA_8x15K) provided by 
the University of North Carolina. We obtained data from 147 ovarian cancer samples, 
including 22 long (greater than 5 years) and 22 short (less than 1 year) survival time 
samples. Total feature numbers of mRNAs and miRNAs used were 17,814 and 799 
respectively. Up to date, the data sets have been aggregated since then, however we 
presented the implementation results from our originally downloaded data sets. 
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2.2 Methods for classification 

To investigate prediction of cancer survival subtypes, we analyzed three different 
ovarian cancer datasets, involving:  (1) miRNA expression profiles, (2) mRNA 
expression profiles and (3) combinations of miRNA/mRNA expression profile data 
sets. In the case (3), we selected features for the 22 long and 22 short survival samples:  
based on individual feature selection from miRNA and mRNA expression profiles. 
The initial implementation was based on feature selection using the Fisher criterion 

score i.e.   / , where μ and σ represent the mean and standard 
deviation of a given mRNA (miRNA) in one class, while and represent the same in a 
second class.     

For each of the above datasets (1)-(3), we used four different classification methods:  
(A) RF and SVM-based machine learning algorithm, and (B) a modified regression 
analysis method involving Cox regression, based on initial feature selection 
(FSCR_REG) (C) a SVM-based machine learning algorithm using gene expression 
levels multiplied by Cox coefficient (FSCR_SVM).  All implementations were 
performed using leave-one-out cross-validation, but RF was performed 5 fold-cross-
validation.  We will first describe the SVM protocol (A) above.  For the two classes 
of 22 longest and 22 shortest surviving patients, we selected gene sets consisting of 
the n most significantly differentially expressed genes using Fisher criteria scores.   
For feature set sizes n = 1 to 100, we tested the accuracy of differentiation among the 
two classes, to obtain optimal numbers of features for classification.  Under the leave-
one-out protocol, we predicted the class (either long or short survival time) of each 
test sample using SVM based on the selected miRNA and/or mRNA expression 
features as predictors. In the case of FSCR_REG method (B), we again selected 
features using Fisher criterion scores differentiating the 22 short and 22 long survival 
samples (excluding left out test samples), but computed Cox proportional hazard 
regression coefficients using survival data for all patients. We computed Cox risk 
scores as linear combinations of the selected feature expression levels, weighted by 
multivariate Cox proportional hazard regression coefficients. We then computed 
survival predictors using the above Cox coefficients of test sample expression levels 
using as a threshold the overall mean of the 43 training data for each sample left out. 
The formulation of Cox risk score of i th sample is given as:  

 (1) 

 

  

  

where the  are Cox coefficients,  is th gene expression of th sample.   

2| |a bµ µ− 2 2( )a bσ σ+

   Cox risk  score = β1x1i + β2x2i ++ βnxni

sβʹ′ kix k i
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 In the case of FSCR_SVM method (C), we performed same procedural of (B) and 
then used SVM classifier for new matrix data sets generated by multiplying gene 
expression level and Cox coefficients using all data sets including intermediated data 
sets.  The matrix form is followed.  

         𝑓𝑜𝑟  𝑖 = 1,⋯ ,𝑛      𝑗 = 1,⋯ ,𝑚 (2) 

where  ’s are Cox coefficients, and are the gene expression of   th sample 

and  is   by  matrix.  Figure 1 shows a schematic diagram of FSCR methods.  

 

Fig. 1. Schematic diagram of FSCR_REG, and FSCR_SVM methods. Gene 
were selected using short and long survival data sets. Cox coefficients were 
computed using all data sets including intermediate data sets with long and 
short survival data sets. 

3 Results/Discussion 

3.1 Comparing three different data types using SVM with 
feature selection. 

In order to find optimal numbers of features for discriminating long and short survival 
phenotypes, we used Fisher criterion scores (Materials and Methods). To classify 
patients as long- or short-term survival, we implemented leave-one-out cross 
validation using SVM, with Fisher feature selection, using three different data types: 
(1) miRNA expression profile data, (2) mRNA expression profile and (3) a dataset 
generated by the combination of two data sets. The algorithm performed with 75% 
accuracy in balanced datasets using 60 features only from miRNA expression profiles, 

ij j ijM xβ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦

β ijx j i

ijM n k
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and 63.64% using five features only from mRNA.  We note that feature selection was 
done entirely independently of the test samples here, including in the leave-one-out 
cross-validation (LOOCV) tests. 

To understand better the interaction of the mRNA and miRNA biomarkers, we 
selected a fixed number n of mRNA markers and m of miRNA markers yielding a 
pair (n, m), with n, m ranging from 1 to 40 in all combinations.  For each choice (n, 
m), we determined the LOOCV accuracy using the top n mRNA and the top m 
miRNA, based on Fisher feature selection repeated on each training set cycle for each 
of the 44 left out subjects.  This gave a classification accuracy for each pair, yielding 
a function of (n, m), with contours in Figure 2. The best accuracy achieved was 
86.36%, with a selection of 2 miRNAs and 8 mRNAs.  This should be judged relative 
to the fact that 1,600 combinations of features are used; however, there are clear 
trends in the graph in Figure 2, which vary systematically with the variables n and m 
in the diagram, so it is unlikely that the strong discriminations are based on low-
probability outcomes. 
 

 
 

Fig. 2. Contour of accuracies for miRNA and mRNA pair sizes using SVM 
based on individual feature selection. Y-axis presents the number of 
miRNAs and x-axis presents the number of mRNAs. 

3.2 Integrating intermediate survival time for FSCR 

Here we introduce a modified approach for integrating intermediate information. We 
first created training and test subsets from the 44 samples including the 22 short and 
22 long patients, for a leave one out procedure.  After leaving out one of the 44 
samples, we selected features using Fisher criterion scores based on feature vectors 
consisting of miRNA and/or mRNA expression profiles.  We expanded the training 
set for computing Cox regression coefficients from the 44 to include all 146 patients 

IWBBIO 2013. Proceedings Granada, 18-20 March, 2013 521



(excluding the one left out from the original 44).   We calculated the Cox regression-
weighted linear combination of the expression level of these genes to generate Cox 
risk-scores.  In test data sets we applied these Cox coefficients to expression levels 
generating a predictor whose prediction threshold was the median of the training Cox 
risk scores for classification- this method is denoted as FSCR_REG. On the other 
hands, we used FSCR_SVM method, which used SVM classifier for a matrix data 
sets, gene level multiplied by Cox coefficients (FSCR_SVM). We tested the three 
information types on survival prediction: (1) miRNA only, (2) mRNA only and (3) 
combined miRNA and mRNA expression profiles, using leave-one-out cross-
validation. The highest classification accuracy is 88.64%, obtained by selecting 2 
miRNAs and 5 mRNAs using FSCR_SVM (Figure 3), followed by performance of 75% 
and 70.45% using individual miRNA and mRNA data sets respectively (see Figure 4 ).   

 

Fig. 3. Contour of accuracies for miRNA and mRNA pair sizes using FSCR 
based on individual feature selection. Y-axis presents the number of 
miRNAs and x-axis presents the number of mRNAs. 
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Fig. 4. Comparison of the performance of four different methods with three 
different type of data sets. RF denotes random forest; SVM, support vector 
machine; FSCR_REG, regression method using intermediate information; 
FSCR_SVM,  svm classifier using intermediate information. 

4. Conclusions 

We have studied predictive classifiers for survival phenotypes using the combination 
of heterogeneous classes of ovarian cancer biomarkers (miRNA and mRNA), 
especially adopting both discrete (dichotomous) and continuous survival time 
information.  It has been shown that while each biomarker class can individually 
predict survival times, there is an interactive improvement when the classes are 
combined in a single machine learning dataset.  This combination of different data 
types in a single classifier is useful and can also be extended to simple algorithms in 
more general contexts of data integration.  More generally in machine learning 
methods, kernel matrices have the same structure for all data types (if the number of 
samples is constant), and can be combined by simple kernel addition, thus extending 
our procedure to one for standardized data integration.  The classification 
methodology is based on feature selection followed by integration of molecular 
information in miRNA and mRNA for classifying ovarian cancer survival times, with 
accuracies from the combined information improving that from individual mRNA or 
miRNA data alone.  Among the approaches tested, the combined miRNA and mRNA 
data information gives better results than individual data set does. The best 
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performance is achieved using the FSCR_SVM method, which uses intermediate 
information between short and long survival time and integrating two different data 
sets. The results of different methods and data types are in Figure 4.  

Our discussion shows that while many survival-related cancer mechanisms are 
difficult to identify on an individual (e.g. single gene) level, it in some cases 
nevertheless possible to predict survival phenotypes from diffuse and noisy data sets 
such as large scale gene and miRNA expression data.  In particular, the strong 
prediction using miRNAs of survival phenotypes indicates that such diffuse signature 
mechanisms may be quite pervasive in the progression of ovarian cancer.  In contrast 
to integrating over large numbers of features including miRNA, it is likely also that 
there are detailed mechanisms to be found that will produce biologically significant 
information. 
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