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Abstract. Flow cytometry is a technique that is used to count cells and to char-

acterize property of the cells. In spite of enormous information content on the 

cells provided by flow cytometry, cytometry data is still analyzed based on step-

by-step gating, either manually or automatically via bioinformatics. This paper 

presents a new strategy of interpreting cytometry data in a different manner. 

The proposed strategy utilizes clustering approach to identify cell population of 

interest and supervised approach to identify statistical significant cell regions in 

the population that can differentiate prostate cancer patients from the benign 

patients. 

1 Introduction 

Recent advancement in flow cytometry allowing up to 20 fluorochrome dyes to be 

generated by cytometer instrument [1-2]. As a result, this technique generates very 

complex data and requires bioinformatic techniques to simplify the data while preserv-

ing information on the data. Several studies have been made to reduce data complexi-

ty, emphasizing on improving the gating and visualization techniques on the cytometry 

data, using both supervised and unsupervised methods, on single or multidimensional 

fluorochrome dyes. These visualization/gating techniques are normally programmed 

as an add-on package for statistic programs such as BioConductor [1, 3-7] and Matlab 

software [8]. 

The common drawback of these techniques is that it requires programming 

knowledge in R or Matlab to perform. Furthermore, these techniques involve complex 

analysis steps to derive its conclusions, which could lead to high accumulated error 

rate, albeit, these errors are insignificant in each step. For example, Zare et al. [6] 

developed the SamSPECTRAL R package which requires pre-requisite knowledge in 

BioConductor software to operate the package. Jeffries et al. [8] designed an APT 

package based on Matlab software to visualize cytometry data which involves com-

plex analysis steps, such as density detection, outlier removal, pixel removal, cluster 

smoothing and cluster breakpoint detection. 

Unlike these conventional techniques, this paper presents a new strategy for inter-

preting cytometry data in a different manner. In the proposed strategy, the cell popula-

tion of interest (i.e. lymphocyte cells, in this study) in each raw cytometry sample is 
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first extracted using clustering method and the cell regions in the population are ana-

lyzed using supervised method. The strength of the proposed strategy is that it does 

not involve complex analysis steps to derive its result which is comparable to the 

conventional approach. This can reduce error rate incurred in complex analysis steps. 

In addition, no pre-requisite programming knowledge is required to operate the pro-

posed strategy as we utilize clustering algorithm provided by Weka data mining plat-

form [9]. The possible drawback of the proposed strategy is that the identified cell 

regions may not be easily related to biology explanation due to our present knowledge 

in flow cytometry is still limited on visualizing fluorescence wavelengths into 2 popu-

lations, i.e. positive and negative; than narrowing the focus into the cell regions in 

these populations. 

The proposed strategy is examined using 10-color cytometry data that repeated in 3 

different tubes, yielding 18 unique fluorescence markers, i.e. 6 common markers + (3 

tubes x 4 unique markers). These data were clinically diagnosed as prostate cancer 

and prostate benign. 

The rest of the paper is organized as follows. Section 2 describes our approach. 

Section 3 presents the experiment data. The results are presented in Section 4. Finally 

in Section 5, the conclusion is drawn with discussions. 

2 Implementation 

The aim of this paper is to identify a group of events (i.e. cell regions) that can differ-

entiate 2 types of prostate disease. The proposed strategy involves 3 main compo-

nents, which are cluster extraction, data transformation and class prediction. Fig. 1 

below presents the schematic work of our approach. 
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Fig. 1. Schematic work for cytometry analysis. 

 

The cytometry data in the LMD format were first retrieved from cytometer instru-

ment. Using the scatter parameters (i.e. forward and side scatters), the WEKA expec-

tation maximization (EM) clustering algorithm was then applied to cluster lymphocyte 

cells for each cytometry sample using the raw values (i.e. first dataset in the LMD 

file). Based on the identified lymphocyte clusters from the first dataset, the corre-

sponding log values for each fluorescence parameter for the lymphocyte cells (i.e. 

second dataset in the LMD file which is similar to FCS data) were extracted and the 

dead lymphocyte cells were then removed using side-scatter and dead/alive fluores-

cence parameters. Finally, the log cytometry data were then analyzed using artificial 

neural network (ANN). 
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2.1 Expectation Maximization 

Expectation maximization (EM) is a probabilistic clustering approach that uses maxi-

mum likelihood estimation, coupled with the probability computation for each possi-

ble solution (i.e. cluster) for the observation (i.e. cytometry event), to predict the like-

lihood of the possible solutions where an observation should belongs. The EM algo-

rithm iterates between the steps of estimating a probability distribution for the clusters 

(known as E-step) on the current model and re-estimates the model parameters using 

new probability distribution (known as M-step). The EM algorithm has been adopted 

in several cytometry studies [3-4] as the preliminary step to discover cell populations 

in each cytometry sample. 

The reason for choosing EM from the Weka data mining suite in this study is due to 

it can be implemented directly on the LMD data without any prior preprocessing step 

and programming knowledge required. In addition, the EM algorithm in Weka pro-

vides flexibility on auto-clustering (i.e. detecting possible number of clusters in each 

sample) and manual-clustering (i.e. user can pre-define maximum number of clusters 

in each sample). 

In this paper, the default setting in the EM algorithm was applied, except that the 

random seeding parameter was increased from 100 to 1000 and the maximum number 

of clusters was pre-set to 3. 

2.2 Logarithmic Data 

There are several studies looking into the deficiency of logarithmic transformation 

could lead to serious misinterpretation of cytometry data [10-11] and proposed a new 

statistics procedure to overcome this deficiency [12-13]. However, there is no stand-

ard procedure on the efficient transformation technique should be used in cytometry 

data analysis and is subject to individual research groups. 

The logarithmic data provided in the LMD file was used in this study due to the 

EM algorithm has eliminated non-lymphocyte cells from being extracted for log trans-

formation. The new statistic procedure aiming to alleviate logarithmic deficiency in 

visualizing negative and zero valued data (which will appeared at the edges of the log 

scatterplot). Since the EM algorithm has eliminated most of these “debris” from lym-

phocyte cells, there is no necessary for using new transformation techniques in this 

study. In addition, majority of the flow cytometry users still prefer to visualize cytom-

etry data with logarithmic display and the logarithmic data in the LMD files fulfilled 

FCS standard. 
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2.3 Artificial Neural Network 

Artificial neural networks (ANNs) have been used for classification in flow cytometry 

[14-15]. In this paper, a 3-layered backpropagation neural network, coupled with 

stepwise search procedure to identify the significant cell regions in discriminate cy-

tometry samples. The model was trained with training set (i.e. 60% training samples) 

and tested using the testing set (i.e. 40%). To avoid any bias on the reported results, 

samples were re-shuffled 50 times in each training, testing and validation sets. The 

trained model was then further validated using another new set of blind samples. 

For the ANN architecture, as the stepwise search procedure was applied, an incre-

ment of 1 node in the input layer each time a new network model was created and each 

input node represent a unique cell region in a specific florescence histogram; 2 hidden 

nodes in the hidden layer and an output node indicated the class of the samples. 

3 Prostate Cancer Dataset 

This study used the peripheral blood mononuclear cell (PBMC) collected from 20 

patients which were clinically confirmed with prostate disease as either cancerous or 

benign. The data were collected on the Beckman Coulter Gallios instrument that able 

to collect data in 10 fluorescence wavelengths as well as forward and side scatters. 

Each sample was prepared in 3 different tubes with 10 fluorescence markers in each 

tube, yielding 16 unique markers (6 common markers and 4 unique markers in each 

tube). All data storage was at a resolution of 1024 x 1024 with 1024 channels. 

Among 20 clinically diagnosed prostate samples, 14 were clinically diagnosed as 

benign prostate, 6 were cancerous with different Gleason scores, ranging from 

Gleason scores 7 to 9. Ten samples (i.e. 6 benign and 4 prostate cancer) were random-

ly selected to train/test the model. The remaining 10 samples were kept separately and 

used as blind validation set. 

The 18 unique fluorescence markers used in this study were CD3, CD25, FoxP3, 

CD4, Dead/Alive, CD49d, CD127, CD39, BTLA, PD1, Lag3, CD62L, CCR7, 

CD45RA, GITR, CCR3 and ICOS. The average log values of the common markers 

CD3, CD25, FoxP3 and CD4 were used for analysis in this study. 

4 Results 

Amongst 17 unique fluorescence markers (excluding the dead/alive marker), the 

marker CCR7 has been predominantly selected by the ANN model in this study. By 

looking into the top 100 regions selected by the ANN model, 72 regions were selected 

from CCR7+, followed by 15 regions from CD4+, 2 from FoxP3-, 8 from FoxP3+, 2 

from BTLA+ and 1 from CD127+. Table 1 shows the summary results of the identi-

fied markers based on the top 100-ranked regions. The overall test predictive error for 
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the top 100 selected region is < 0.07 and the p-value for the selected markers is p < 1 

x 10
-6

. The classification result is depicted in Table 2. 

 

Table 1. The summary result for the identified marker based on the top-100 ranked regions. 

Marker Total number of regions 

in the dataset 

Total number of 

selected regions 

CCR7 330 72 

CD4 368 15 

CD127 454 1 

FoxP3 550 10 

BTLA 422 2 

 

Table 2. The classification results for 20 blind samples. 

Samples Target CCR7 CD4 CD127 FoxP3 BTLA 

P35 Prostate Prostate Benign* Benign* Benign* Benign* 

P53 Prostate Prostate Prostate Benign* Prostate Benign* 

P113 Benign Benign Benign Benign Benign Benign 

P114 Benign Benign Benign Benign Prostate* Benign 

P116 Benign Benign Benign Benign Benign Benign 

P139 Benign Benign Benign Benign Prostate* Benign 

P144 Benign Benign Benign Benign Prostate* Benign 

P42 Benign Benign Benign Benign Prostate* Benign 

P44 Benign Benign Benign Prostate* Benign Benign 

P45 Benign Prostate* Benign Benign Prostate* Prostate* 

* indicates misclassification. 

 

All the selected regions, except 3 regions in FoxP3, were belong to positive popula-

tion on the fluorescence histogram displays. The distribution of cell positive in FoxP3 

is sample-dependent, as these regions seemed to be the cutoff areas for 2 populations 

(i.e. negative and positive) in the FoxP3. On the histogram display for FoxP3, clear 

populations cutoff on benign patients are likely to be happened at log 380-390, while 

at log >400 on cancer patients. 

Among the selected cell regions, 6 were found in markers CD8+, 3 in FoxP3 and 1 

in CD4+. This indicates that CD8+ is a strong predictor marker, statistically speaking, 

followed by FoxP3, to differentiate prostate patients from the benign one, than CD4+. 

Among the selected cell regions in CD8+, all regions show clear separation be-

tween cancer and benign groups with the presence of lymphocyte cells (not detectable 

or low) in either group. Meanwhile, 2 out of 3 regions selected in FoxP3 show a mod-

erate number of cells presented in benign patients but is not detected in cancer pa-
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tients, indicates that these 2 regions may be a better prognosis features for benign 

patients than cancer patients, however, experiment on these region on healthy patients 

will be performed in near future to confirm whether they are group-dependent. 

These selected regions were further validated using 10 blind samples and results 

showed that these regions have high prediction power with 2 misclassifications, i.e. 

prostatitis and healthy samples. It is not surprised that the ANN model misclassified 

prostatitis and healthy blind samples as these disease patterns were never presented in 

the training process. 

It is important to note that due to the high dimension of channels and parameters 

used in this study (i.e. 1024 channels x 9 fluorochromes), there is a potential of differ-

ent sets of fluorochrome/region combinations may deliver better, worse or equivalent 

performance to the reported region/fluorochrome in this study. Due to the low supply 

on cancerous samples, the network was trained with 12 samples, consequently, may 

yield optimistic results, from statistic perspective, albeit, the identified regions were 

further validated using blind samples. 

5 Discussions 

This study demonstrated the feasible use of this new strategy in interpreting cytometry 

data from the conventional manner. The use of EM and ANN are able to distinguish 

prostate patients, cancerous and benign, from PBMC flow cytometry histograms char-

acterized with multi-parameters (up to 11 parameters including scatters parameters) 

and multi-channels (up to 1024 channels), with better, at least comparable, perfor-

mance as the conventional approach. The strength of our method is the removal of 

user prejudice on certain markers and thus, all the parameters in the data are equally 

treated in the analysis. Furthermore, this method can be operated by users with little 

knowledge in programming and can be easily implemented with any classifiers, cus-

tomized classifier or publicly available classifier. 

The proposed strategy adopted similarity concept as presented by Ravdin at al. [14] 

on the study of S-phase for breast cancer patients. The differences between the pro-

posed strategy and Ravdin et al. are the latter analyzed single-dimension histogram 

based on prior manual gating technique with only 32 channels and emphasized on the 

regression process of S-phase. The proposed strategy, on the other hand, looking into 

multi-parameters and multi-channels. Rather than using manual gating approach which 

is user subjective, this study applied clustering approach to isolate lymphocyte cells 

from ‘debris’ and identified cell regions that are, statistically, significant to differenti-

ate benign and prostate cancer patients based on 9 fluorochromes. 

The drawback of our method is lay on the supervised classifier, which was not able 

to identify unknown sample or the sample that was never been presented in the learn-

ing process. The other possible drawback of our method is the identified re-

gions/parameters may not contain much biological information as compared to the 

identified parameters using gating approach; however, it is very much user subjective. 

We believe that our method has fulfilled, to some extent, requirement as a preliminary 

diagnostic tool for confirming the status of the patients as either benign or cancerous, 

so that the correct treatment can be designed for different disease groups. 
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