
High performance 3D visualization on the Web:
a biomedical case study

Jesús Jiménez, Jaime Cruz, and Juan Ruiz de Miras

Department of Computer Science, University of Jaén, Campus Las Lagunillas s/n,
23071 Jaén, Spain

{jjibanez,jctorre,demiras}@ujaen.es

Abstract. There are many desktop-based applications that offer a so-
lution for biomedical problems. Usually, one of the most important task
of these biomedical applications is the 3D graphics visualization. In last
years, the development of web-based applications has taken a great im-
portance and are defeating desktop-based applications, mainly, because
the benefits this class of software has. However, until recent times, web
developers were not able to directly run high performance graphics na-
tively on a web context. But nowadays, the appearance of the Khronos
WebGL standard make that limitation possible. This work summarizes
the WebGL capabilities and presents a successful experience related to
the inclusion of high performance graphics on the web. This is done by
developing an interactive visualization of voxelized 3D models with the
aim of analysing magnetic resonance images of the brain.

Keywords: 3D graphics, WebGL, Medical imaging, Box-Counting

1 Introduction

The medical image representation, both on a two- or a three-dimensional spaces,
is a very important and interesting topic. For some years, several successful desk-
top applications have been presented to the research community [1–3]. Several
of these software applications allow to read medical images, such as those ob-
tained through magnetic resonance scanners, or to obtain a 3D virtual view of
the captured element.

Nowadays, web-based applications are overcoming the classic desktop soft-
ware development [4]. The software that resides on the cloud presents some
advantages over local applications. Firstly, it is not necessary to install the soft-
ware, the user only has to access to a webpage through his preferred web-browser.
Therefore, with a web application we ensure that the user is using the latest ver-
sion of the software, since the update process is done at once in the server instead
of in each client machine, as happens with desktop applications. Secondly, the
cross-platform character of the web-based applications could attract extra users,
since they are not limited to a concrete operating system.

Web-based applications are becoming more and more powerful, and the per-
formance distance between these ones and desktop applications is increasingly

IWBBIO 2013. Proceedings Granada, 18-20 March, 2013 465

2 IWBBIO 2013

closer. A traditional differentiator point between desktop and web applications
is the capability of represent 3D graphics. During the last years, there have been
different efforts on creating a development scheme for graphics representation on
the web. Thus, one of the first and successful technologies was VRML (Virtual
Reality Modelling Language) [5], later improved by X3D [6]. These two tech-
nologies were widely used by the scientific community and the developers for
representing 3D models on the web. But VRML and X3D only offer the guide-
lines and sintaxis for representing the composition of a 3D scene by using plane
text, in the first case, or XML documents, in the case of X3D. Therefore, the
representation of the 3D scene will require the installation of especial plug-ins
and 3D viewers for interpreting the text and labels, each one especially designed
for a concrete web-browser. This fact avoided an easy standardization of both
technologies, mainly due to the fact that the development of the plug-ins was not
a browser responsibility, but it depended on third-part developments. Recently, a
new technology has appeared: WebGL (Web-based Graphics Library). This new
3D API has been converted in a standard thanks to the support of the main web
browser manufacturers. At the moment there are some web applications that
benefit from using WebGL to deal with biomedical problems on the web, e.g. [7,
8].

The rest of the paper is organized as follows. First we describe the WebGL
API, highlighting the libraries that facilitates its programming task. We then
describe the biomedical case study on which we have tested the odds and capa-
bilities of WebGL. Finally, we summarize in the conclusions section and expose
some future works.

2 WebGL

WebGL is an API developed by the Khronos Group that extends the capability of
the classic JavaScript programming language, allowing the generation of native
3D graphics in any compatible web browser, without needing extra plug-ins.
It is not necessary to install any 3D viewer, since WebGL objects are shown
on the different web browsers thanks to the new HTML5 Canvas element. The
WebGL API [9] is based on the OpenGL ES 2.0 standard [10], so it enables
a direct access to each GPU (Graphic Processing Unit) located on the client.
WebGL has a cross-platform character and it is royalty-free. WebGL can easily
access and interact with the HTML content through the Document Object Model
(DOM) interface. Focusing on the performance of WebGL when managing 3D
graphics, the results are very satisfactory, overcoming to all the others 3D Web
technologies and showing frame rates close to the ones achieved with an standard
OpenGL plus C++ implementation [11].

WebGL is directly interpreted and executed by each web browser, when work-
ing with any of the ones that comply with the WebGL standard (Google Chrome,
Mozilla Firefox, Apple Safari or Opera). Internet Explorer, the Microsoft’s web
browser, does not offer support for this standard API.

IWBBIO 2013. Proceedings Granada, 18-20 March, 2013 466

High performance 3D visualization on the Web: a biomedical case study 3

WebGL presents a powerful but also low-level library, which may cause some
difficulties when developing the web applications. With the aim of solving this
problem and looking for a faster and easier development, some frameworks
working over the WebGL layer have recently appeared. Among them stand out
Three.JS [12], a powerful and efficient library with a lightweight character and
an stable behaviour, which is the most established and widely-used WebGL li-
brary. Three.JS allows to easily manage some graphics programming aspects
such us the camera, lights, shadows, or data loaders, among others.

By using Three.JS, complex 3D scenes could be easily created and embedded
on HTML5 web pages, allowing the developer to focus his efforts on create richer
content for the web.

Next, a pseudo code sample is presented. This sample shows how a simple
rotated cube could be included in a HTML document by using Three.JS. The
representation of a simple scene like the one presented in the code sample, would
have required a deep knowledge of the graphics visualization pipeline and tens
lines of code if the direct WebGL API had been used; a fact that becomes in even
a more complex problem when developing advanced and complex 3D scenes.

<script src="lib/Three.js"></script>

<script>

var renderer = new THREE.WebGLRenderer(); //WebGL Handler

renderer.setSize(window.innerWidth, window.innerHeight);

//Add WegGL canvas to the DOM

document.getElementById("parent_div").

appendChild(renderer.domElement);

//Camera definition:

var camera = new THREE.PerspectiveCamera(fov, ratio, near, far);

camera.position.z = 400;

var scene = new THREE.Scene(); //Parent node

//3D mesh definition: Geometry and Material

var geometry = new THREE.CubeGeometry(n,n,n);

var material = new THREE.MeshNormalMaterial();

var mesh = new THREE.Mesh(geometry, material);

mesh.rotation.x += 0.5; //Mesh Transformations

//Lights definition:

var light = new THREE.DirectionalLight(hex, intensity);

light.position.set(x,y,z);

scene.add(mesh); //Add mesh to the scene

scene.add(light); //Add lights to the scene

renderer.render(scene, camera); //Render scene

</script>

(Pseudocode of a sample scene definition with WebGL through the Three.JS API)

IWBBIO 2013. Proceedings Granada, 18-20 March, 2013 467

4 IWBBIO 2013

Fig. 1. WebGL system architecture.

In Figure 1, a scheme of the system architecture when using WebGL is de-
picted. As could be seen, JavaScript plays the intermediary role between HTML5
and the WebGL functionality. That functionality is accessed through calls to
the Three.JS API, in our case, thus accessing to the WebGL context and con-
sequently to the OpenGL ES API, both integrated on the web browser. Then,
the browser communicates with the computer’s graphic driver that finally trans-
lates the commands to the hardware, thus obtaining high performance graphics
natively executed on the GPU.

3 A biomedical case study: Fractal Dimension estimation
through the Box-Counting algorithm

The Fractal Dimension (FD) is a measurement of the topological complexity of
an object, both on 2D or 3D. It has been demonstrated that by analysing the
FD of medical images, many interesting results could be obtained [13]. High-
lighting some of them, Esteban et al. present in [14] a FD analysis of the brain
gray matter for an early detection of neurodegenerative diseases like Multiple
Sclerosis; meanwhile, in [15] and [16] the white matter’s cerebral structure and
its degeneration with ageing is quantified also by using FD analysis; and a FD
analysis of the complexity of the fetal cortical surface is performed in [17, 18]. An
interesting review of the most relevant methods to calculate the FD and their
application in the biomedical field is presented by Lopes and Betrouni in [19].

The box-counting algorithm [20] is one of the most widely used methods for
estimating the FD value. As its name indicates, this algorithm consists on count
how many boxes are necessary to cover a 2D or 3D object, previously discretized
by using a threshold value. This process is repeated varying the edge size of the
boxes (Figure 2). Thus, moving from a level to the next one implies the addition
of one pixel to the edge box size. The value of the FD is calculated through a
log-log linear regression in which the X axis represents the inverse of the box
size, and the Y axis represents the number of counted boxes. The final value for
the FD corresponds to the slope of the linear regression.

IWBBIO 2013. Proceedings Granada, 18-20 March, 2013 468

High performance 3D visualization on the Web: a biomedical case study 5

Fig. 2. Box-counting results. Two voxelized models (box size 1 pixel and 5 pixels).

In a previous work, we have developed a desktop application that allows the
calculation of the 3D Fractal Dimension (3DFD) of magnetic resonance images
(MRIs) [21]. In addition to the isolated 3DFD value, the software also offers
an interactive 3D representation of the loaded object, and also a view of the
different voxelized models obtained when applying the box-counting algorithm.
By this way, the user can graphically understand how the box-counting algorithm
works, and also what is the influence that the input parameters (i.e. the threshold
value, or the box size) have on the considered 3D model. Next, we present how
the interactive web-based version of this 3D graphic representation have been
developed by using WebGL.

3.1 WebGL Implementation Details

In addition to the classic problems and difficulties associated with any 3D
graphics-managing implementation, when developing with WebGL or any of its
associated high-level libraries, the data which represents the 3D object (or what-
ever that has to be shown in the web browser) resides in a server computer, so
it is necessary to perform a data transfer through the network. To minimize the
performance impact of these data transfers, mainly in terms of computing time,
a lightweight data-change format has to be used, for example a text format like
JSON (http://www.json.org/), which is very compact, easy to read and write,
and completely language independent.

In our implementation, once the box-counting, for a selected box size, has
been calculated on the server, the result is transferred to the client web-browser
as a JSON object, to visualize the 3D object through WebGL and Three.JS, as
established along the paper. While the client is visualizing the model, and also
while the user interacts with it, other set of box-counting calculation processes
are launched on the server and then transferred and stored in the client using
second-plane (so transparent to the user) AJAX (Asynchronous JavaScript and
XML) calls. Thus, when the user wants to visualize another consecutive box size,
the response is immediate since the new 3D grid has been previously calculated,
received and saved.

Regarding the 3D representation of the different brain voxelizations, we ap-
plied two basic optimizations. First, the geometry is merged in only one mesh,

IWBBIO 2013. Proceedings Granada, 18-20 March, 2013 469

6 IWBBIO 2013

which reduces the number of objects and speeds their visualization. Second, when
representing each voxel (cubes), the hidden faces are removed thus decreasing
the complexity of the model.

Figure 2 shows two snapshots of our developed WebGL application, in which
two brains at different resolutions are represented, together with the HTML
controls that allow the interaction with the them.

4 Conclusions

The development of web-based applications are defeating to the desktop-based
ones because the different benefits that the web software has. For this reason,
nowadays JavaScript is not only a language used to perform little changes on a
HTML document, it has become in a powerful tool that allows programmers to
develop powerful and high performance applications.

In this work, we have presented a case study to show up how web-based
biomedical applications with a high performance 3D graphics requirement can be
developed thanks to WebGL. The fast popularization of WebGL is being mainly
possible thanks to recently developed libraries and APIs built over WebGL, such
us Three.JS. This facilitates the graphics programming, allowing developers to
create powerful applications.

Besides WebGL, some novelties technologies are appearing in recent times
for incrementing the high performance capabilities of web browsers. For exam-
ple, Khronos WebCL [22] is a new standard for parallel computing on the web
that warps OpenCL by using the JavaScript language. Another example is the
JavaScript Web Workers [23], an API that allows to launch independent and
parallel JavaScript scripts on a multi-core CPU. In the future, we will deal with
these technologies with the aim of optimizing and improving web-based software.

Acknowledgments. This work has been partially supported by the University
of Jaén, the Caja Rural de Jaén, the Andalusian Government and the European
Union (via ERDF funds) through the research projects UJA2009/13/04 and
PI10-TIC-5807.

References

1. Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J., Pu-
jol, S., Bauer, C., Jennings, D., Fennessy, F., Sonka, M., Buatti, J., Ayl-
ward, S., Miller, J.V., Pieper, S., Kikinis, R.: 3D Slicer as an image comput-
ing platform for the Quantitative Imaging Network. Magnetic resonance imaging,
DOI:10.1016/j.mri.2012.05.001. (2012)

2. Friese, K., Blanke, P. Wolter, F.: YaDiV - An open platform for 3D visualization
and 3D segmentation of medical data. Visual Computer, 27(2) 129–139. (2011)

3. Fischl, B.: FreeSurfer. NeuroImage 62(2) 774–781. (2012)
4. Taivalsaari, A., Mikkonen, T., Anttonen, M., Salminen, A.: The death of binary

software: End user software moves to the web. Proceedings - 9th International Con-
ference on Creating, Connecting and Collaborating through Computing.(2011)

IWBBIO 2013. Proceedings Granada, 18-20 March, 2013 470

High performance 3D visualization on the Web: a biomedical case study 7

5. Ames, A.L., Nadeau, D.R., Moreland, J.L.: The VRML Sourcebook. (1996)
6. Brutzman, D., Daly, L.: X3D: extensible 3D graphics for Web authors. Morgan

Kaufmann. (2007)
7. Cantor-Rivera, D., Bartha, R., Peters, T.: Efficient 3D rendering for Web-based

Medical Imaging Software: a proof of concept. Progress in Biomedical Optics and
Imaging - Proceedings of SPIE. (2011)

8. Jacinto, H., Kéchichian, R., Desvignes, M., Prost, R., Valette, S.: A web interface
for 3D visualization and interactive segmentation of medical images. Proceedings,
Web3D 2012 - 17th International Conference on 3D Web Technology, 51–58. (2012)

9. WebGL Specification 1.0. Khronos Group. https://www.khronos.org/registry/

webgl/specs/1.0/ (2011)
10. OpenGL ES. Khronos Group. http://www.khronos.org/opengles/ (2012)
11. Hoetzlein, R.C.: Graphics performance in rich internet applications. IEEE Com-

puter Graphics and Applications 32(5), 98–104. (2012)
12. Cabello, R.: Three.JS library: download and documentation. http://mrdoob.

github.com/three.js/ (2012)
13. Fernández, E., Jelinek, H.F.: Use of fractal theory in neuroscience: methods, ad-

vantages, and potential problems. Methods 24(4), 309–321. (2001)
14. Esteban, F.J., Sepulcre, J., Ruiz de Miras, J., Navas, J., de Mendizbal, N.V., Goñi,

J., Quesada, J.M., Bejarano, B., Villoslada, P.: Fractal dimension analysis of grey
matter in multiple sclerosis. Journal of Neurological Sciences 282, 67-71. (2009)

15. Liu, J.Z., Zhang, L.D., Yue, G.H.: Fractal dimension in human cerebellum mea-
sured by magnetic resonance imaging. Biophysical Journal 85, 4041–4046.(2003)

16. Zhang, L., Dean, D., Liu, J.Z., Sahgal, V., Wang, X., Yue, G.H.: Quantifying
degeneration of white matter in normal aging using fractal dimension. Neurobiology
of Aging 28, 1543–1555. (2007)

17. Wu, Y.T., Shyu, K.K., Chen, T.R., Guo, W.Y.: Using three-dimensional fractal di-
mension to analyze the complexity of fetal cortical surface from magnetic resonance
images. Nonlinear Dynamics 58, 745–752. (2009)

18. Shyu, K.K., Wu, Y.T., Chen, T.R., Chen, H.Y., Hu, H.H., Guo, W.Y.: Analysis
of fetal cortical complexity from MR images using 3D entropy based information
fractal dimension. Nonlinear Dynamics 61, 363–372. (2010)

19. Lopes, R., Betrouni, N.: Fractal and multifractal analysis: A review. Medical Image
Analysis 13, 634–649. (2009)

20. Russel, D., Hanson, J., Ott, E.: Dimension of strange attractors. Physical Review
Letters 45, 1175–1178. (1980)

21. Ruiz de Miras, J., Villoslada, P., Navas, J., Esteban, F.J.: UJA-3DFD: A pro-
gram to compute the 3D fractal dimension from MRI data. Computer Methods and
Programs in Biomedicine 104, 452–460. (2011)

22. Aarnio, T., Bourges-Sevenier, M.: WebCL Working Draft. Khronos WebCL
Working Group. https://cvs.khronos.org/svn/repos/registry/trunk/public/
webcl/spec/latest/index.html. 2012.

23. JavaScript Web Workers. http://www.whatwg.org/specs/web-apps/

current-work/multipage/workers.html. 2012

IWBBIO 2013. Proceedings Granada, 18-20 March, 2013 471

