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Abstract. In this paper a search for the logical variants of gene-gene
interactions in genome-wide association study (GWAS) data using ant
colony optimisation is proposed. The method based on stochastic al-
gorithms is tested on a large established database from the Wellcome
Trust Case Control Consortium and is shown to discover logical opera-
tions between combinations of single nucleotide polymorphisms that can
discriminate Type II diabetes. A variety of logical combinations are ex-
plored and the best discovered associations are found within reasonable
computational time and are shown to be statistically significant.
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1 Introduction

The human genome is written in base pairs of the four single nucleotides (Ade-
nine, Cytosine, Guanine and Thymine) and variations of these nucleotides ex-
ist within a population of individuals called single-nucleotide polymorphisms
(SNPs). These SNPs can determine phenotypic traits of individuals (e.g. height,
BMI) and the propensity to suffer from diseases such as Type 1 and Type 2
Diabetes. Each SNP has three possible genotypes (e.g. CC, GG, CG) due to
the diploid nature of human genomes. As sequencing genomes becomes cheaper,
the sequencing of thousands of genomes individuals are now possible and this
has opened a door to new types of wide-ranging studies. It is indeed now pos-
sible to search for the relationship between the genome and diseases across a
population of individuals and for a large number of SNPs. This major challenge
is represented by a set of studies known as Genome-Wide Association Studies
(GWAS).

Type II diabetes (T2D), affected hundreds of millions people over the world [6]
and is characterized by insulin resistance. The heritability of this disease has
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been proven widely [4]. Insight into the genetic architecture of T2D detecting
replicated diabetes association signals is provided in [2] and associations for T2D
using a family-based design to control for population stratification are reported
in [3]. In [7], the role of genetic variants to confirm if they increase risk of T2D
is evaluated and in [8] a common genetic variant in T2D mellitus that does not
appear to be in a coding region is identified. In [9], the role of the quantitative
contribution of insulin resistance and impaired insulin secretion as genetic fac-
tors is studied. However identifying genetics risk in Type II diabetes has met
with only limited success [10] and then remains as a formidable challenge [11].

From a computational perspective GWAS present a significant challenge as
there are hundreds of thousands SNPs (variables) per individual and in the
majority of studies these are recorded for thousands of individuals creating a
database of large proportions (almost 2.5bn elements in the experiments de-
scribed below). Any computational approaches used to analyse this data there-
fore must be scalable in the face of this large-scale data. The task becomes even
more complex when two or more SNPs are investigated for association, where a
number of logical relations might exist between the SNPs. Here we consider the
full range of two SNP logical associations with an ant-colony optimisation ap-
proach and report the most promising of these. Therefore, this paper presents a
stochastic approach to the analysis of full-scale genome-wide association studies
data with the aim to find combinations of SNPs that have association with T2D
across of a population of thousands individuals.

2 Data

This research uses the database of The Wellcome Trust Case Control Consortium
(WTCCC) which is a collection of GWAS studies relating to a variety of diseases
including Type II Diabetes [1]. In this database, a total of 5003 human genomes
are provided, with ∼500,000 SNPs recorded for each individual in the database.
Each SNP represents a small change in the genome and consists of two alleles
(Adenine, Cytosine, Guanine and Thymine). Due to the diploid nature of human
genomes, there are three possible genotypes for each SNP (e.g. CC, GG, CG).

GWASs data has to undergo a series of quality control tests before it can be
used. Therefore there are some exclusion criteria that must be applied to ensure
the quality of the remaining data. The SNPs that were kept are those that met
these four conditions in the 3,004 samples of genome of individuals without T2D.
Readers are asked to refer to the GWAS literature for more information on these
criteria [5].

– Hardy-Weinberg equilibrium Exact Test > 10−4

– Minor allele frequency > 1% for these 3,004 individuals
– Studywise missing data proportion < 5% for these 3,004 individuals
– Studywise minor allele frequency > 5% for these 3,004 individuals or study-

wise missing data proportion < 1% for these 3,004 individuals

and meeting these two conditions in the 1,999 samples of genomes of indi-
viduals with T2D:
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– Hardy-Weinberg equilibrium Exact Test > 10−4

– Minor allele frequency > 1% for these 1,999 individuals.

The remainder contains 405,139 SNPs.

3 Combinations

The combinations of two SNPs that are usually considered is the following. An
individual is positive if and only if a first SNP (snp1) takes a specific value
(value1) and a second SNP (snp2) takes a specific value (value2). This imple-
ments the logical operation AND between two SNPs and is the standard GWAS
method to consider the combination of SNPs associated with a disease. In this
study however, the complete set of logical operations between two SNPs is con-
sidered. The logical operations that are considered are based on a first SNP
(snp1) taking a specific value (value1) and a second SNP (snp2) taking a spe-
cific value (value2). The two following logical expressions can take the two values
0 and 1:

Snp1 = value1

Snp2 = value2

Thus there are 4 (22) possibilities to consider and for each possibility, a
combination can take the values 0 and 1 thus there are 16 (42) combinations to
consider as described in the table 1 with XOR a type of logical disjunction on
two operands that results in a value of true if exactly one of the operands has a
value of true:

Combination1 Always 0
Combination2 snp1 = value1 AND snp2 = value2
Combination3 snp1 = value1 AND NOT(snp2 = value2)
Combination4 snp1 = value1
Combination5 snp2 = value2 AND NOT(snp1 = value1)
Combination6 snp2 = value2
Combination7 snp1 = value1 XOR snp2 = value2
Combination8 snp1 = value1 OR snp2 = value2
Combination9 NOT(snp1 = value1 OR snp2 = value2)
Combination10 NOT(snp1 = value1 XOR snp2 = value2)
Combination11 NOT(snp2 = value2)
Combination12 NOT(snp2 = value2 AND NOT(snp1 = value1))
Combination13 NOT(snp1 = value1)
Combination14 NOT(snp1 = value1 AND NOT(snp2 = value2))
Combination15 NOT(snp1 = value1 AND snp2 = value2)
Combination16 Always 1
Table 1. The complete set of logical operations from snp1 = value1 and snp2 = value2
that are considered.
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However, a number of combinations among the 16 combinations do not need
to be considered:

– The combinations 1, 4, 6, 11, 13 and 16 do not involve the two SNPs.
– The combinations 12 and 5 are respectively the same as the combinations

14 and 3 with swapping the two SNPs with each other and the two values
with each other.

– The combinations 9, 10, 14 and 15 are the negations of the combinations 8,
7, 3 and 2.

Thus, only four logical operations need to be considered:

– An individual is positive if and only if the first SNP takes a specific value
and the second SNP takes a specific value. (Combination2: AND)

– An individual is positive if and only if the first SNP or the second SNP takes
their specific values. (Combination8: OR)

– An individual is positive if and only if the first SNP takes a specific value
and the second SNP does not take a specific value. (Combination3: AND
NOT)

– An individual is positive if and only if exactly one of the two SNPs takes its
specific value. (Combination7: XOR)

4 Methodology

A permutation-based ant colony optimisation (ACO) approach is used to search
for combinations of SNPs that can discriminate T2D. A value is associated with
every SNP that represents how likely the SNP could be good at discriminating
T2D. This value P(n) is called the amount of pheromone of the SNP n. The
amounts of pheromone P is used to select SNPs for new combinations thanks
to a tournament selection inspired by [18]. The algorithm can be described as
follow :

1 Initialise pheromone on each SNP

2 Repeat

3 For all the 100 ants:

4 Select two SNPs via tournament selection of size 50

5 Calculate the fitness of the combination

6 End

7 Updated pheromone of the two SNPs with the best fitness

8 For all SNPs: apply evaporation rate 1%

9 End

5 Results

The best results of one hundred algorithm runs over 10000 generations with 100
ants and 50 items in the tournament selection are saved. With these parame-
ters, a generation of the algorithm lasts in average 1.28 seconds so a run lasts
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an average of 3 hours and 32 minutes using a machine with a 1TB 7200RPM
hard-drive and an Intel Core i7-2600 CPU @3.40GHz. The ACO algorithm found
good results for combinations of two SNPs. Each combination is shown in ta-
bles 2 and 3 with the rs identification number and then chromosome number and
position on the genome in brackets. Each combination has a calculated p-value
to determine the likelihood of this association being discovered by chance, hence
smaller values are better. These p-values can be compared to those drawn from a
sample of randomly generated AND associations that resulted in a best p-value
of 7 ×10−13.

Some combinations are with two SNPs in similar regions on the genome are
often correlated through a phenomenon known as linkage disequilibrium (LD),
meaning this association is therefore likely to be an artefact, despite they are
the strongest signal within this dataset. These combinations are shown table 2
whereas the combination with two SNPs that cannot be correlated through link-
age disequilibrium (LD) (as they are on different chromosomes) are shown in
table 3.

Combination p-value

rs7031174(9,36651528)=CA and rs7045471(9,36603003)=CC 8×10−36

rs7031174(9,36651528)=CA and rs10814425(9,36643684)=AA 7×10−35

rs7031174(9,36651528)=CA and rs10973013(9,36645648)=AA 7×10−35

rs7031174(9,36651528)=CA and rs2151644(9,36623898)=AA 7×10−35

rs7031174(9,36651528)=CA and rs10972978(9,36566847)=CC 2×10−34

rs10829495(10,130478405)=CT or rs4132670(10,114757761)=TT 1×10−15

rs4512469(9,36649725)=GA xor rs7031174(9,36651528)=GA 4×10−28

rs4512469(9,36649725)=AA xor rs7031174(9,36651528)=AA 1×10−27

rs10733480(9,36684476)=AA xor rs7031174(9,36651528)=TT 2×10−26

rs10733480(9,36684476)=AT xor rs7031174(9,36651528)=AT 1×10−26

rs7031174(9,36651528)=CA xor rs4512469(9,36649725)=AA 5×10−18

Table 2. Sample of the best combinations of SNPs described as rs num-
ber(chromosome, position) and their p-value that were discovered.

Table 2, as expected shows very small p-values, theoretically the strongest
signals in the dataset, but linkage disequilibrium prohibits them from further
analysis. The very close positions on the chromosome mean that it is likely
that these SNPs are indeed correlated. However, it is interesting to note that
a variety of logical operations appear in this table of lowest p-values. Table 3
shows a more biologically plausible set of results with rs7901695, rs11196205 and
rs4506565 previously associated with Type 2 diabetes [20] [1]. It should be noted
that rs7077039 is also closely located on the genome to rs11196205, although it
has not been named as a contributor to T2D.
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Combination p-value

rs10992923(9,93688875)=GA or rs11196205(10,114797037)=GG 3×10−16

rs7666328(4,116140909)=GA or rs7077039(10,114779067)=GG 5×10−16

rs6449054(4,14240655)=TC or rs4506565(10,114746031)=CC 8×10−16

rs11196208(10,114801306)=GG or rs10992923(9,93688875)=AG 1×10−15

rs17489797(4,63836645)=TA and not(rs7901695(10,114744078)=AA) 8×10−18

rs4506565(10,114746031)=AA and not(rs6449054(4,14240655)=AA) 8×10−16

rs11196205(10,114797037)=GG and not(rs10992923(9,93688875)=CC) 2×10−15

rs17489797(4,63836645)=TT and not(rs7901695(10,114744078)=AA) 1×10−15

rs4132670(10,114757761)=AA and not(rs6449054(4,14240655)=AA) 1×10−15

Table 3. Sample of the best combinations of SNPs described as rs num-
ber(chromosome, position) and their p-value that were discovered.

6 Conclusion

In this paper, an ant colony approach to the problem of discovering combinations
of SNPs from large-scale GWAS data has been described. Combinations of 2
SNPs that can discriminate T2D patients from controls have been discovered by
the approach. The ACO has been able to find some of the strongest signals in
the dataset (although as explained above these have been ruled out on biological
grounds) and has found associations that are replicated in the literature. The
investigation of logical variations has shown that these provide the algorithm
with greater power to express the relationship between two or more SNPs. In
particular, the NOT operator allows the system to exclude one genotype in a
SNP and exclude the others, an important logical distinction. Further work is
required to examine these relationships in more detail and to determine if they
have biological plausibility in addition to statistical significance.

The ACO method can be applied to any GWAS dataset that conforms to the
standard OXSTATS format and so further trials are planned on other disease
datasets from the WTCCC, including Type I Diabetes and Rheumatoid Arthri-
tis. The algorithm is also able to discover higher order combinations of SNPs
(e.g. 3+ SNPs, not shown) that would not be possible using existing methods.
However, care would need to be taken with higher-order interactions as the num-
ber of possible logical operations will increase very quickly and it may not be
practical to test all feasible combinations for every SNP combination.
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