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Abstract. Current advances in DNA sequencing technology have mo-
tivated the investigation of reliable gene identification methods, an open
area currently present in bioinformatics. Gene recognition can be con-
sidered as a search problem, where many evidence sources should be
combined in a scoring function that must be maximized to obtain the
most likely and right gene structure in a genomic sequence.
In this article, we combine a support vector machine classifier to reduce
the search space together with a multiobjective genetic algorithm as
main search engine to deal with a set of prospect structures. We made
use of various content statistics that are commonly employed to obtain
evidences of coding regions in DNA sequences which will determine the
probability of a certain structure to be an actual gene.
We use the human sequences located at the chromosomes 3, 19 and 21
as training set, and the chromosome 18 genes to check the performance
of our system. Very promising results are obtained.

1 Introduction

The terms gene recognition, gene structure prediction or gene finding are used
when determining which parts of a sequence are coding and constructing the
whole gene from its start site to its stop codon [16, 1]. The remaining of this work
is concerned only with eukaryotic gene recognition, as that is more important
and difficult.

There are two basic approaches to gene structure prediction. Homology based
approaches search for similar sequences in databases of known genes. These
methods are usually called extrinsic methods. The growing number of sequenced
genomes and known genes is increasing the potential of homology based methods.
However, it is clear that only genes that are somewhat similar to known genes
can be identified in this way. The second set of methods are usually known as
intrinsic methods, and include two basic approaches [8]: ab initio and de novo
methods. Both are based on obtaining the features that characterize a coding
region and/or the functional sites, and using them to find the correct structure
of the unknown genes. Ab initio methods use only the information of the genome
to be annotated (the target genome), whereas de novo methods add information
of one or more related genomes (the informant genomes).
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The methods for obtaining and using that information are many, such as
neural networks, hidden Markov models, conditional random fields, etc. These
methods try to recognize genomic sequence patterns that are characteristic of
splice donor and acceptor sites, translation initiation sites and termination sites,
and/or specific features of coding regions. Some of them also try to find other
important parts, such as promoters, untranslated terminal regions, polyadenila-
tion sites, etc., although the recognition of these sites is a very difficult problem
on its own.

One of the first significant improvements in ab initio prediction was GEN-
SCAN, which achieved both accuracy and robustness using a single genome as
input. No new significantly better methods were obtained until the development
of dual-genome predictors. Dual-genome predictors use two genomes, the genome
to be annotated and the genome of a related organism.

We consider gene recognition as a search problem where many sources of ev-
idences are combined to obtain the structure of a probable gene. The approach
presented in this paper links two basic methods. Firstly, we use support vector
machines (SVMs) [3] to localize the functional sites along the genomic sequence.
The second basic part of our approach is evolutionary computation (EC). We ap-
proach the problem as a multiobjective search for which we use different content
statistics combined in pairs.

We have used for our evaluation five different content statistics measures:
in-frame hexamers, average mutual information, position asymmetry, length dis-
tribution and local compositional complexity, all of which are tested in an evo-
lutionary framework for gene recognition.

The remainder of the paper is organized as follows: Section 2 describes the
framework that will be used and the content measures uses in the study, pre-
senting the multiobjective algorithm that will be used as a gene finder system,
Section 3 states the experimental setup, in Section 4 results are showed, and
Section 5 provides the conclusions of the study.

2 Evolutionary gene recognition framework

Evolutionary computation [12, 7, 17] is a set of global optimization techniques
that have been widely used in the last few years for almost every problem within
the field of Artificial Intelligence. As we have explained, gene recognition task
can be considered as a search problem, where the objective is to find the most
likely right gene structure in a target genomic sequence given. To carry out
this search in the possible solution space, it is easy to think in a evolutionary
technique due to its attractive features. These methods have the ability to si-
multaneously search different regions of a solution space, making possible to find
a diverse set of solutions for difficult problems with non-convex, discontinuous,
and multi-modal solutions spaces. The application of evolutionary computation
to gene structure prediction design is based on a two-step procedure. The first
step consists of reducing the search space. In a second step, we develop the
evolutionary algorithm to find the most likely gene structure.

IWBBIO 2013. Proceedings Granada, 18-20 March, 2013 438



3

The first step is devoted to limit the search space. A gene is a structure
delimited by two sites, the start and stop codons. Between these two boundaries
we have two different substructures, exons and introns, flanked by donor and
acceptor sites. If we consider no restrictions, the search space would be huge,
and any method would very likely fail. The common approach for reducing the
search space is to limit the putative start, splice and stops sites, to the most
probable ones. In our system, we consider support vector machines (SVMs) using
a string kernel function [6] for site recognition. String kernels are an appropriate
and specific function kernel to deal with character sequences.

A second reduction of the search space is achieved by taking into account
the constraints in the gene structure:

– The exons do not overlap.
– The gene starts and finishes with an exon.
– An intron must be flanked by two exons.
– A gene can be composed of only one exon.

Evolutionary methods are general purpose randomized optimization tech-
niques which exploit principles inspired from biological systems [7]. A genetic
optimization algorithm performs a search by evolving a population of candi-
date solutions (individuals) modeled with ”chromosomes”. From one generation
to the next, the population is improved by mechanisms derived from genetics.
Mathematicaly, an individual can be defined as:

Ip = {xT , [xD1, xA1, xD2, . . . , xAn, ]xS} x ∈ N (1)

where each x is a specific functional site and xT < xD < xA... < xS (T, tis;
D, donor; A, acceptor; S, stop-codon).

The most common form of EC involves the following steps. First, an initial
population of chromosomes is randomly generated taking in account the list
of splice sites from first step and the biological restrictions of a correct gene
structure. Then, the goodness of each chromosome is evaluated according to a
predefined fitness function representing the considered objective function. This
fitness evaluation step allows one to keep the best chromosomes and reject the
worst ones by using an appropriate selection rule based on the principle that the
better the fitness, the higher the chance of being selected. Once the selection
process is completed, the next step is devoted to reproducing the population.
This is done by genetic operators such as crossover and mutation operators. The
entire process is iterated until a user-defined convergence criterion is reached.

2.1 Multi-Objective Genetic Algorithms (MOGAs)

A multi-objective optimization problem has a number of objectives, each of them
is to be either minimized or maximized. MOGAs use genetic algorithms (GA)
to optimize these objectives simultaneously and result in a Pareto-optimal front
(a solution set) for higher level analysis and decision. In order to find the Pareto
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front, several multiobjective GA-based approaches have been proposed in the
literature.

In this paper, we will adopt the nondominated sorting genetic algorithm
(NSGA-II) for its low computational requirements and its ability to distribute
uniformly the solutions along the Pareto front [4]. It is based on the creation
of an initial random parent population. Individuals selected through a crowded
tournament selection undergo crossover and mutation operations to form an
offspring population. Both offspring and parent populations are then combined
and sorted into fronts of decreasing dominance (rank). After the sorting process,
the new population is filled with solutions of different fronts starting from the
best. If a front can only partially fill the next generation, crowded tournament
selection is used again to ensure diversity. Once the next-generation population
has been filled, the algorithm loops back to create a new offspring population
and the process continues up to convergence.

2.2 Content statistics

Several statistical features are often used for discriminating between coding and
non-coding DNA regions. The measures are used in pairs within a multiobjective
framework. A comparative study on the discriminating power of these features
by themselves was previously conducted within an GA framework [18]. In that
case, in a MOGA framework, a total of five content statistics have been studied:
in-frame hexamers, local compositional complexity, position asymmetry, length
distribution and average mutual information.

In-frame hexamer statistics are related to codon usage bias. Position asym-
metry is related to the asymmetric feature of the distribution of nucleotides
at the three codon positions. Local compositional complexity is based on rich-
ness of exon information. Length distribution is based on the different average
lengths of exons and introns. Average mutual information statistics are related
to the correlation between nucleotides at a certain distance. A description of
these statistics follows:

1. In-frame hexamer frequency (IFH). It has long been known that syn-
onymous codons are not used with equal frequencies and that different or-
ganisms differ in their patterns of codon usage. The in-frame hexamer score
for the interval starting at nucleotide i and ending at j, IF6(i, j) is calculated
as follows:

IF6(i, j) = max


∑

k=0,3,6,...,j−6 ln( fk
Fk

)∑
k=1,4,7,...,j−6 ln( fk

Fk
)∑

k=2,5,8,...,j−6 ln( fk
Fk

)

(2)

where fk is the frequency, in the table of in-frame hexamers in human cod-
ing sequences, of the hexamer starting at position k in the interval. In the
calculation, Fk is the frequency of the same hexamer in a random population
based on the base composition of the sequence. Hexamers with occurrences
equal to those expected by composition have IF6 = 0, those preferred have
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a positive score and those avoided, a negative score. First exons, last ex-
ons, internal exons, unique exons and introns hexamers are evaluated from
different frequency matrices.

2. Local compositional complexity (LCC). In non-coding regions of the
eukaryotic genomes is typical to find large amounts of repetitive DNA se-
quences. In contrast, coding regions hold information richness. This property,
quantified by the Shannon information [20], is a measure of the local re-
dundancy of the sequence. We can define a local compositional complexity
of a segment as a statistical property to distinguish between coding and
non-coding sequences. This local entropy measure, LCC, using a segment of
nucleotides of length L, is defined as:

LCC = −
∑

k={A,C,G,T}

(
Nk

L
)log2(

Nk

L
) (3)

where Nk is the number of times base k occurs in the segment of nucleotides
of length L [14].

3. Position asymmetry (PA). Let f(b, r) be the relative frequency of nu-

cleotide b at codon position r. Let f(b) =
∑3

r=1(f(b, r))/3 be the average
frequency of nucleotide b at the three codon positions, and define the asym-
metry in the distribution of nucleotide b as the variance of this frequency,
i.e., asym(b) =

∑3
r=1(f(b, i)− f(b))2, and the PA of the sequence is defined

as follows [9]:

PA = asym(A) + asym(C) + asym(G) + asym(T ) (4)

4. Length distribution (LD). This statistic provides evidence that introns
and exons have different extreme and average lengths [10]. Even within
the class of exons, the length distributions of first, last and internal exons
all differ significantly from one another. This information can be used as
evidence that an interval is a member of a particular sequence type by looking
up the frequency of the interval length in a table. A low score can be used
as strong evidence that the interval is not part of the actual solution.

5. Average mutual information (AMI). The correlation (ρij(k)) between
nucleotide i and nucleotide j at a distance of k nucleotides can be calculated
as ρij(k) = pij(k)−pipj , where pi and pj are the probabilities of nucleotides
i and j in the sequence and pij(k) is the probability in the sequence of the
pair of nucleotides i and j at a distance of k nucleotides [11]. Thus, for
each distance k, 16 different individual correlations can be calculated. A
measure that summarizes all individual correlations at a given distance k is
the mutual information function,

I(k) =
∑

Pi,j(k)log2(
Pi,j(k)

PiPj
) (5)

The mutual information I(k) quantifies the amount of information that can
be obtained from one nucleotide about another nucleotide at a distance k. In
coding DNA, I(k) oscillates between two values, whereas in non-coding DNA,
I(k) is rather flat. The two values between which I(k) oscillates in coding
DNA in the in-frame mutual information are called Iin at distances k =
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2, 5, 8, . . . , and the out-of-frame mutual information Iout at k = 4, 7, 10, . . ..
To reduce the pair of numbers Iin and Iout to a single quantity, we compute
the average mutual information (AMI) as follows:

AMI =
Iin + 2Iout

3
(6)

3 Methodology

Four different SVM models were trained to predict the potential translation initi-
ation sites, donor splice sites, acceptor splice sites and stop codons in a sequence.
Using the potential site lists, we performed the evolutionary process described in
Section 2.1. The evolution to obtain the final gene structures population of each
test sequence was performed for a number of generations. Taking into account
the results of the studies carried out on previous works, four different setups of
NSGA-II were executed, each of one with using as objective a combination of
two of the mentioned measures:

– In-frame hexamer frequency and Local compositional complexity
– In-frame hexamer frequency and Length distribution
– In-frame hexamer frequency and Position Asymmetry
– In-frame hexamer frequency and Average Mutual Information

Fig. 1: System architecture.

3.1 Decision Maker

Once the stop criterion of the algorithm has been reached, a final evolved popula-
tion has been obtained. All the individuals of this population are non-dominated
individuals, in accordance with the sense of the strict concept of dominance.
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Several actions can be conducted once this point is reached. If the population is
relatively small, this can be examined by a human expert. However, if we follow
a completely automatic system, it is necessary the implementation of a decision-
maker (DM). This DM will be responsible of choosing one of the individuals of
the Pareto front, by examining its features. In our experiments, the G-mean of
the value of the considered objectives has been used like DM, despite the fact
that it represents a field to be researched by itself.

3.2 Evaluation measures

Accuracy is not a useful measure for imbalanced data. In the prediction of gene
structure, the ratio of coding against no coding regions is heavily imbalanced, and
therefore other measures must be used. Several measures have been developed
that consider the imbalanced nature of the problems. Given the number of true
positives (TP), false positives (FP), true negatives (TN) and false negatives
(FN), we can define the following two basic measures: sensitivity Sn = TP

TP+FN

and specificity Sp = TN
TN+FP .

These are common measures in any class-imbalance problem. There are also
specific measures to the gene recognition task. One of the most commonly used
measures of this type is the correlation coefficient, CC:

CC = (TP )(TN)−(FP )(FN)√
(PP )(PN)(AP )(AN)

(7)

where PP are the predicted positives, AP the actual positives, PN the predicted
negatives and AN the actual negatives. CC will be our main measure of the
performance of the method.

The source code used for all methods, in C and licensed under the GNU Gen-
eral Public License, as well as the partitions of the datasets, are freely available
on request from the authors.

4 Experimental setup and results

The system was tested on the chromosome 18 of the human genome, and trained
with the chromosomes 3, 19 and 21. Chromosome 3 has 4 contigs where 1497
genes are distributed, chromosome 19 has 1767 genes distributed on 4 contigs
and chromosome 21 has 312 genes on 8 contigs. The size of the whole dataset
is more than 200 million nucleotides. Figure 2 plots in bps the genes sequences
lengths in chromosome 18.

We used the training dataset to obtain our content statistics. These content
statistics are the objectives that guide our algorithm multiobjective search.

For setting the parameters of NSGA-II, we used k-fold cross-validation, where
k is the total number of training contigs. Thus, we obtained a population size
of 250 individuals, pCRU = 0.2 crossover probability, pMUT = 0.01 mutation
probability and a window length value 11bps for LCC statistic. The maximum
number of generations was set to 5000 in case the stop criterion is not reached.
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Fig. 2: Lengths of the test sequences.

Figure 3 shows the performance of SVM classifiers. Receiver operating char-
acteristic (ROC) curve is a graphical plot which illustrates the behavior of a
classifier when its discrimination threshold is varied. Its corresponding area un-
der the curve (AUC) give a numerical measure of its performance. We can notice
AUC has a value over 0.9 in the four cases.
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Fig. 3: ROC curves that illustrate the site SVMs performances.

The results obtained in the experimental process are shown in table 1. It
shows the mean of the achieved accuracies in each of the 382 genes of chromosome
18.

Table 1 shows the specificity, sensitivity and correlation coefficient at the
nucleotide level. The combination that uses IFH combined with LCC as objec-

IWBBIO 2013. Proceedings Granada, 18-20 March, 2013 444



9

Objetives Specificity Sensitivity CC
IFH+LCC 0.712 0.475 0.597

IFH+LD 0.667 0.444 0.558

IFH+PA 0.638 0.456 0.536

IFH+AMI 0.600 0.427 0.519

Table 1: Comparative statistical results for genes in chromosome 18 at nucleotide
level.

tives is clearly the most discriminant one, achieving better accuracy than all of
the remaining at the nucleotide level. IFH+LD and IFH+LCC show a medium
performance at this level.

To analyze the MOGA final population and individuals that composed it,
could be another interesting topic. In that sense, we can state that the actual
solution, not always but often, is found inside the final population. However,
that individual is chosen by the DM with much lower frequency. Figure 4 shows
two cases where the actual solution is in the Pareto front and it is chosen by the
DM system.

(a) IFH and LCC scores on OSBPL1A
gene predictions.

(b) IFH and PA scores on C18orf1 gene
predictions.

Fig. 4: Examples of Pareto front.
.

5 Conclusions

In this paper, we have presented the first attempt of using evolutionary multi-
objetive computation as the main tool for gene structure prediction reported as
yet. A simple system is presented where no other search paradigm is used. The
system achieves good results at the nucleotide level using efficiently a very small
amount of information.
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This study has concluded that the combination between in-frame hexamer
frequency and local compositional complexity as the only two objectives to max-
imize is the best performing pair, improving over the performance of each mea-
sure isolated [18] and the remaining of combinations. The superior performance
of this system has been confirmed at nucleotide level. These promising results (in
comparison with [8]) and the flexibility of the methodology will provide a tool
that can deal with more complex problems, as alternative splicing, non-canonical
functional sites, ignored stop codons, etc.

In future research, it would be interesting, although computationally quite
expensive, to perform the same study by grouping the measures in three or more
set of objectives. The proposed methodology opens a new field of application of
genetic algorithms to gene structure prediction. Many new sources of evidence
can be added to the system, as well as more sophisticated evolutionary methods.
In the same sense, a more in depth decision maker study is required to improve
the final solution selection.
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