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Abstract. Expression quantitative trait loci are used as a tool to iden-
tify genetic causes of natural variation in gene expression. Only in a
few cases the expression of a gene is controlled by a variant on a single
marker. There is a plethora of different complexity levels of interaction ef-
fects within markers, within genes and between marker and genes. This
complexity challenges biostatisticians and bioinformatitians every day
and makes findings difficult to appear. As a way to simplify analysis
and better control confounders, we tried a new approach for associa-
tion analysis between genotypes and expression data. We pursued to
understand whether discretization of expression data can be useful in
genome-transcriptome association analyses. By discretizing the depen-
dent variable, algorithms for learning classifiers from data as well as
performing block selection were used to help understanding the relation-
ship between the expression of a gene and genetic markers. We present
the results of a first set of studies in which we used this approach to de-
tect new possible causes of expression variation of DRB5, a gene playing
an important role within the immune system. A supplementary website
including a link to the software with the method implemented can be
found at http://bios.ugr.es/classDRB5.
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1 Introduction

Association between genotypes and mRNA transcript levels may help elucidat-
ing genetic basis of complex diseases by analyzing whenever genetic variants
affect gene expression. A variant affecting a disease may be found also in asso-
ciation with a gene expression, i.e., it may be an expression quantitative trait
loci (eQTL). However, it is not straightforward to understand whether it may
truly alter gene transcription or splicing or just being in linkage disequilibrium
(LD) with the real cause [23]. Moreover, because of small sample sizes and lim-
ited computational resources, regression models using a few input variables have
given results hardly reproducible and most succesful association analyses only
have tested single polymorphic loci (SNP) against the expression of a gene in-
stead of considering more than one SNP at a time [7, 23, 21]. We have used a
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different approach to measure SNP-expression data association which relies on
a pre-discretization of expression data as a way to simplify input data and im-
prove performance compared with standard regression models. Discretization of
gene expression data is commonly performed when they are used as the input
variables to predict different phenotypes such as cellular classification in cancer
[15, 18, 24]. With this simplification, we are able to use data to learn a classifier,
i.e. a model that relates how input variables, the SNPs, and their interaction,
affect a discrete output variable, high or low gene expression in our assumption
of only two bins. If this was the case, other more complex analyses, such as
considering multiple SNPs at a time or haplotyping analysis [1] could reduce
computational and statistical complexity becoming both more affordable and
powerful. Therefore, we may use different approaches to learn classifiers and,
as they make different assumptions, shed light about the main features of the
data analyzed and thus about different interaction patterns between genes and
regulatory proteins affecting their expression and about their association with
SNPs within a block of high LD.

We focused on a gene HLA-DRB5 (DRB5). DRB5 is one of the genes that
encode β chains for the DR HLA class II receptor. The HLA genes are located
on the short arm of chromosome 6 and are organized in three regions: MHC class
I, MHC class II and MHC class III. HLA class II genes encode glycoproteins ex-
pressed primarily on antigen-presenting cells where they present processed anti-
genic peptides to CD4+ T cells. The DR β chain is encoded by 4 gens DRB1, 3,
4, and 5. There are also other pseudogenes that do not produce a protein: DRB2,
7, 8, and 9. Not everybody has a copy of each gene or pseudogene. There are 5
different haplotypes with different combinations of genes. DRB5 is only present
in DR51 haplotype. This haplotype has been associated with immune related
diseases susceptibility. In particular, the DRB5*0101- DRB1*1501-DQA1*0102-
DQB1*0602 haplotype has been associated with MS in the North European
population [5]. These alleles are almost always present together in this popula-
tion, making it impossible to distinguish the primary association. DRB alleles
have different structural properties for antigen presentation according to their
amino acid sequence. This points out to a specific antigen presentation as the
pathogenic mechanism through this does not fully explain the disease associ-
ation. The description of polymorphisms that alter HLA gene expression [22]
and the identification of several cis-acting genetic variants on expression of HLA
class II genes [19, 4], makes it possible that association of HLA class II polymor-
phisms with MS may be related to the levels of gene expression to the same or a
greater extent than restriction of antigen response. In fact the ability to induce
active experimental autoimmune encephalomyelitis (EAE), an animal model for
MS disease, was increased in animals expressing higher levels of DRB5*01:01,
pointing to a role of the levels of expression of this gene in susceptibility [13].

We chose this gene because the expression pattern in the two data sets an-
alyzed showed two statistical modes and it was easily translated to a binarized
pattern. In Section 2 we describe the methods we used. Data sets and their at-
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tributes are described in Section 3. Results appear in Section 4 and conclusions
and future work can be read in Section 5.

2 Method

The starting point of our method is a binarized variable which represent the level
of expression of a gene in an individual. We do not focus in the discretization
problem in this work. For the gene we used, DRB5, discretization was a straight-
forward task, as we could assume a density function with two non-overlapping
normal distributions. Figure S1 (a) and (b) show histograms corresponding to
DRB5 expression levels in the two data sets (CEU and YRI, respectively) used.

This study focused on only one gene with a well-known expression behavior
as our purpose was to understand whether discretization may be a valid method
to increase power. Therefore we were able to explore the genotypes at the whole
chromosome so that both cis and trans within a chromosome eQTLs could be
detected. As a way to reduce computational time when using this method with
many genes only cis eQTLs could be first analysed.

2.1 Classification algorithms

A classification learning algorithm starts from a previously given set of training
data sets D and try to learn a function f : X → Y , where X is the set of input
variables (i.e. a subset of SNPs) and Y is the output variable (i.e. the expression
of the gene: low or high).

In order to deeply understand the population bias [26] and shed light about
genetic causes of differential expression, we chose three state-of-the-art and com-
putationally affordable algorithms to learn classification models for predicting
the expression level of the DRB5 gene. The first approach was the Naive Bayes
(NB) classifier, which is a simple probabilistic classifier which works under the
assumption that all input variables are conditionally independent given the out-
put variable. The second approach was classification trees, in which the data set
is divided in structured hypercubes of those individuals sharing values. We chose
its most competitive algorithm, C4.5 [17], called J48 in an open-source version
implemented in Weka [8]. For the last approach, we chose support vector ma-
chines (SVM), in which the input variables are transformed in a higher-dimension
space so that a classifier is learned from the set of transformed variables by us-
ing a kernel function. We chose the default implementation of support vector
machines in Weka, which uses the Sequential Minimal Optimization [16] as the
learning algorithm. One advantage of the first two approaches is that they build
white-box models, i.e., models are directly readable and interpretable by human
experts.

2.2 Block processing

As a natural way to select input attributes in genome-wide data, we may group
them in blocks of low recombination, i.e., SNPs with high LD among them. Thus,
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we grouped SNPs by using a common approach based on pairwise computations
of confident intervals of LD [6]. As LD is known to be higher in individuals
with European ancestries than from Africa [11], we made blocks by using CEU,
the data set of individuals with European ancestries (see Section 3) and used
those blocks to group SNPs in YRI, the data set of individuals with African
ancestries. Figure S2 shows the average number of SNPs by block in the data
set used. Given a block, a classifier with only those SNPs in that block as input
variables was learned.

Figure 1 shows a flowchart with all the steps followed to conduct this study.

Fig. 1. Flowchart showing the steps followed in this study in order to obtain a minimal
set of candidate eQTLs for expression of gene DRB5.
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3 Data sets used

As data sets we used all (113) the unrelated individuals (parents) from CEPH
(CEU), an Utah (USA) data set of individuals with Northern and Western Eu-
ropean and all (113) the unrelated individuals (parents) from a data set (YRI)
of the Yoruba (Nigeria) population. Genotypes in chromosome 6 (where gene
DRB5 belongs to) of these individuals passing quality control (6593) [10] were
chosen from the third phase of HapMap project [9] to avoid large amounts of
missing data, as in the other phases not all these individuals were genotyped.
Haplotypes and missing information were inferred by using familial information
and the IMPUTE2 algorithm [12] and these data were downloaded from the
HapMap project website (http://www.hapmap.org).

Gene expression data was obtained for only 108 individuals from CEU and
107 from Yoruba, so that we only used genotypes of these individuals as well.
Expression data came from the RNA of lymphoblastoid cell lines. Details about
the procedure followed to obtain expression data, including raw expression data
normalization, population stratification correction and correction for known and
unknown factors are described by Stranger et al. [21]. Gene DRB5 was found
lowly expressed in 63.5% of the CEU data set and 70% of the YRI data set.

SNPs in chromosome 6 were grouped in 345 non-overlapping blocks of low
recombination [6] which were learned from the CEU data set.

DRB5 is a gene coded between physical positions 32593098 and 32606042 in
assembly NCBI36/hg18 or between 32485120 and 32498064 in assembly GRCh37/hg19.
6 SNPs has been genotyped in HapMap 3 within the gene DNA region. These
SNPs belong to block 223. Table S1 at the supplementary material shows the
SNPs within the block. Those in bold correspond to SNPs within the gene.

4 Results

In this section we describe the results we obtained when using all the SNPs
to learn classifiers (Subsection 4.1) and when using only those SNPs within a
block and models with single SNPs (Subsection 4.2). Because LD is lower in
African populations than in European populations, we only show results from
YRI population as the number of candidate eQTL SNPs among all found in
association with the DRB5 expression is lower than if we used CEU data set.
However, very similar results in terms of predictive capacity of the different
approaches used were found when using the CEU data set (data not shown).

4.1 Whole models

In a first step using all SNPs at a time, we studied the extent to which the ex-
pression level of DRB5 was fully controlled by the SNPs chosen and whether
redundant or noisy variables could affect the overall performance. Thus, we
learned classifiers using all SNPs in the data sets and the three different learn-
ing machines: NB, C4.5 and SVM. To measure generalization capacity of the
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learned models, we used 10-fold cross-validation (10-cv) [14], so that results are
the mean between 10 disjoint test data subset of 1/10 of the original size when
the model was learned with the remaining individuals. The area under the ROC
curve (AUC) was very high when using NB and reached its maximum (perfect
classification) for C4.5. See Figures S3 (a), (b) and (c) for the ROC curves ob-
tained when using NB, C4.5 and SVM respectively. See Table 1 for classification
accuracy in percentage (column 2), AUC (column 3) ans relative absolute er-
ror (column 5). For comparative purposes, we also showed results when using
original continuous expression data and two state-of-the-art algorithms to learn
regression models: SVM-reg [20], which are based on support vector models and
kernel methods, as its supervised classification counterpart; and Gaussian pro-
cesses [25], which is a Bayesian approach that employs Gaussian process priors
over regression functions to improve their generalization capacity. The relative
absolute error (column 5) is defined for both classification and regression models
and it shows how all the classification models used outperform all the regression
models.

Table 1. Generalization capacity of different learning machines using all SNPs in the
data sets as input variables.

Predictive Models Accuracy Area under Roc Root Mean Square Error Relat. Abs. Error

NB 89.7% 0.89 – 22.3%
C4.5 99.0% 1.00 – 1.6%
SVM 79.5% 0.66 – 48.8%

SVM-Reg. – – 3.22 72.3%
Gaussian Proc. – – 2.1 55.1%

An outstanding result is given by C4.5 and YRI data set, with 99% accuracy
and 1.0 AUC. The results become even more interesting due to the white-box
nature of C4.5 and its pruning feature so that the subset of variables not pruned
in the tree-like model can help biomedical researchers to understand SNPs reg-
ulation the expression of DRB5. On the contrary, classifiers based on SVM and
regression models had a low predictive capacity even when is well-known that
expression regulation of DRB5 is controlled by genetic variants in chromosome
6 tagged by some of the SNPs from the genotype array used.

4.2 Block-based approach

In a second step using blocks, we tried to understand the consequences on clas-
sification performance of reducing the number of input variables by using block
selection, a biologically-inspired feature selection method. Would accuracy keep
as higher as when all SNPs were used?

For each data set we used NB, SVM and C4.5 algorithms to compute AUC
and accuracy in 10-cv using as input variables only those SNPs within a block.
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We repeated this process for each block out of the 345 blocks which chromosome
6 was divided by.

Figure S4 shows that AUCs, which reached its maximum using C4.5 and
all SNPs, is also maximum by using only single blocks with SVM and NB for
several blocks. Moreover, values seem to follow an ascending function from the
chromosome extremes to blocks 223 to 224 in which AUC=1 for the three learn-
ing machines used (results for C4.5 are not shown). A simple explanation is that
DRB5 is coded in block 223 and SNPs in this block capture allelic mutations
in DRB5 that avoid its transcription or may be cis-acting regulatory factors.
In order to understand how many SNPs within block 223 or others with high
performance are tag SNPs and how they interact, we first have computed AUC
and accuracy by using single SNPs as input variables. Figure 2 shows AUC for
NB using blocks (pink) and the SNP within a block with maximum AUC (blue).
Similar results are obtained with the other classifiers. Table 2 (a) shows those
single SNPs and the blocks they belong to when AUC reached its maximum
for all the algorithms used. Figure S5 (a) shows how perfect classification us-
ing single SNPs means perfect association between expression level (red is high
expression and blue means low expression) and genotypes (from left to right:
homozygotic wild type, heterozygotic and homozygotic mutant allele) using any
of these SNPs.

High performing in adjacent blocks may be due to high LD, something that
is supported by the descending-with-distance pattern showed in Figure 2.

Fig. 2. YRI data set. AUC (y-axis) from NB using single blocks (pink) and single SNPs
(blue) with maximum classification performance (blue) with 10-cv. First SNP for the
block analyses or the SNP for analyses using single SNPs are shown on x-axis.
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Table 2. List of SNPs with highest performance (AUC=1) and their respective blocks.

SNP (Physical position assembly GRCh37/hg19) Block number

32530198 223
32531923 223
32573991 224
32574060 224
32575369 224

5 Conclusions

In this work we have shown how by discretizing gene expression, classification
learning machines can be used to learn and test complex models made up of
hundred or thousand input variables which are robust to redundancy and noisy
variables. Results obtained for gene DRB5 have extensively been confirmed by
the more standard regression models, as they only require mono-variate models
to explain DRB5 expression. The levels of DR gene expression could condition
the type of immune response. The high expression of DRB5 gene could affect
directly the concentration of peptide-MHC complex on the antigen presenting
cell (APC) and in turn, to affect the duration and specificity of the T cell-TCR
with APC-HLA molecules interaction. It has been shown that the immunological
synapse strength in the interaction between the antigenpresenting cells (APC)
and the T cell determines the fate of T cells into Th1 or Th2 types [3]. The
stronger TCR signal favors Th1 differentiation and this is dependent on the
potency of TCR/peptide-MHC interactions, density of peptide-MHC complexes
including co-stimulatory molecules and the duration of T cell-APC contacts.
Therefore, the higher or lower expression of the different HLA molecules, opens
a spectrum of possible combinations with specific structure receptors and levels
of co-stimulatory molecules that would determine the magnitude and quality of
the T cell response and the type of fate decision made by peripheral T cells [2].

We have shown how several classification algorithms are robust to redun-
dancy and multi-variate classifiers are still able to keep predictive accuracy. Some
of the classification approaches have revealed to be very helpful for biomedical
researchers, as they have learned white-box models easily interpretable by hu-
man experts. Feature selection of SNPs based on LD criterion has helped to
identify SNPs that may be candidate eQTLs in the predictive models. Because
of their low computational complexity to the number of input variables, we have
been able to use very robust classification algorithms under different approaches
with all the SNPs within chromosome 6. These conclusions are more difficult to
obtain when using regression models, as the larger complexity of a regression
model compared with a classifier translates into a reduction in robustness to
redundancy and therefore in generalization capacity and interpretability.
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