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Abstract. This paper investigates robust stability of uncertain genetic
regulatory networks (GRNs). It is assumed that the uncertainties are
in the form of a parameter vector that determines the coefficients of
the model via given functions. And the novel multivariable regulation
functions are introduced here to describe the underlying relationship be-
tween different biochemical substance. Firstly, it is shown that, by using
Lyapunov functional method and linear matrix inequality technology
(LMI), a criteria is established to ensure the robust asymptotical stabil-
ity of GRNs. Moreover, it is also shown that by using the square matrix
representation (SMR) of matrix polynomials and by adopting polyno-
mially parameter-dependent Lyapunov functions, a condition in form of
linear matrix inequalities (LMIs) for robust stability for all admissible
uncertainties can be obtained. An example with real biological model is
provided to illustrate the use of the proposed methodology.
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1 Introduction

Recent years, researches in the study of GRNs are active, and both theoretical
and experimental results are fruitful. So far, in the literature, GRNs are typi-
cally considered as biological dynamic systems [1,2], the dynamical behaviors of
genes, proteins and mRNAs can be modeled by series of nonlinear differential
equations. Similar to other dynamic systems, stability is one of the key properties
of GRNs with obvious biological significance [3]. Please see [4,5], and references
therein for the stability analysis of GRNs. Other than “stability”, another im-
portant issue is to construct a precise structure of the networks’ mathematical
model, in which the “uncertain” property plays a key role in the dynamic anal-
ysis. In synthetic and real GRNs, the uncertainties arise from various sources,
both internal and external. Since the mathematical model of GRNs is derived
from real-world gene expression data, the modeling error is unavoidable. Besides
the modeling error, the internal and external perturbations or fluctuations also
bring the uncertainties to the network [6]. Furthermore, in order to better re-
flect the underlying regulation mechanism of GRNs, the multivariable regulation
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2 Uncertain GRNs with multivariable regulation functions

functions are proposed here. In such functions, different variables are multiplying
or coupling together which yield the combinatorial regulation mechanism, and
the combined effects of several regulatory proteins on the control of gene expres-
sion or protein degradation can be captured [8]. In real biological networks, such
combined properties are indeed exist, and regulation functions with such forms
can be found in [9].

Motivated by the reasons discussed above, in this paper, we focus on the
robust stability of uncertain GRNs with multivariable regulation functions. It
is shown that a condition for robust stability of the uncertain GRNs can be
established by using Lyapunov functional method and LMI. Moreover, it is shown
that by solving a convex optimization problem with LMIs built by using SMR,
and by introducing polynomially parameter dependent Lyapunov functions, a
condition for robust stability for all admissible uncertainties can be obtained.

2 Preliminaries

2.1 Problem Formulation

Notation: In: n × n identity matrix; 0n: origin of Rn; AT : transpose of matrix
A; A > 0(A ≥ 0): symmetric positive definite (semidefinite) matrix A; A ⊗ B:
Kronecker product of matrices A and B; diag(...): block-diagonal matrix; #:
represents a matrix which can be inferred by symmetry.

In this section, we introduce a GRN model described by differential equations
as follows:





dz(t)

dt
= −A(θ)z(t) + B(θ)f(z(t)) + D(θ)ḡ(z(t)) + u(θ)

θ ∈ Θ

(1)

where z(t) ∈ Rn represents the concentration vector, i.e., each component zi(t)
is the concentration of the ith node of a GRN. A(θ) ∈ Rn×n is diagonal, which
contains the production or degradation rates, B(θ) , D(θ) ∈ Rn×n are two
matrices that defines the regulation effects of the regulation functions f(z(t))
and ḡ(z(t)), respectively. u(θ) is a vector accounting for the basal production
rates of the components of the networks.

In GRN (1), θ ∈ Rr is the time-invariant uncertainty vector and Θ is the
uncertainty set described by

Θ = {θ ∈ Rr : ti(θ) ≥ 0 ∀i = 1, 2, ..., r} (2)

where ti(θ) are polynomials. One thing worth noting that, in GRNs, regu-
lation functions are used to capture the combined effect of several regulatory
proteins on the control of gene expression or protein degradation and describe
the topology structure of these metabolites. Since in many GRNs, the monotone
regulation functions are not just simply added together only, but may be cou-
pled with another variable also. So, multivariable regulation function ḡ(z(t)) is
introduced here. In (1), ḡ(z(t)) is defined as follows:

ḡ(z(t)) = diag(w(t))g(z(t)) (3)
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Uncertain GRNs with multivariable regulation functions 3

where wi(t) ∈ {z1(t), z2(t), ..., zn(t)}. Here, f(z(t)) and g(z(t)) are regulation
functions, which are generally nonlinear or linear single-variable functions. One
special case of the regulation function is with Hill form, i.e.

gi(z(t)) =
zi(t)

H

βH + zi(t)H
β > 0, zi(t) > 0 ∀i (4)

where H is the Hill coefficient. The function ranges from 0 to 1 and increases
as zi →∞.

Let z∗(θ) be an equilibrium point of (1), i.e., a solution of the following
equation

0n = −A(θ)z∗(θ) + B(θ)f(z∗(θ)) + D(θ)w∗(θ)g(z∗(θ)) + u(θ). (5)

For convenience, let us shift the origin to the equilibrium point z∗ by defining
x = z − z∗(θ), y = w − w∗(θ), and letting h(x(t)) = f(x(t) + z∗(θ))− f(z∗(θ)),
r(x(t)) = g(x(t) + z∗(θ))− g(z∗(θ)).

Then, for all θ ∈ Θ, system (1) becomes
dx(t)

dt
= −[A(θ) + E(θ)]x(t) + B(θ)h(x(t)) + C(θ)r(x(t)) + D(θ)r̄(x(t)) (6)

where
x(t) = [x1(t), x2(t), ..., xn(t)]T , h(x(t)) = [h1(x1(t)), h2(x2(t)), ..., hn(xn(t))]T ,

r̄(x(t)) = [y1(t)r1(x1(t)), y2(t)r2(x2(t)), ..., yn(t)rn(xn(t))]T
(7)

and yi(t) ∈ {x1(t), x2(t), ..., xn(t)}.

2.2 Representation of Polynomials

Before proceeding, let us introduce a key technique that will be exploited in the
next section. Let M(x) ∈ Rn×n be a matrix polynomial of degree 2m in x. Then,
M(x) can be written as

M(x) = 4(M̄ + U(α), x{m}, In) (8)

where 4(M̄ + U(α), x{m}, In) denotes the notation

4(M̄ + U(α), x{m}, In) = (x{m} ⊗ In)T (M̄ + U(α))(x{m} ⊗ In) (9)

where M̄ is a symmetric matrix, and U(α) is a linear parametrization of the
linear space

U = {U = UT : 4(U, x{m}, In) = 0}. (10)

The matrix polynomial M(x) is said to be SOS if it can be written as

M(x) =
∑

i

Mi(x)T Mi(x) (11)

for some matrix polynomials Mi(x). Then, M(x) is SOS if and only if there
exists α such that the following LMI holds:

∃α : M̄ + U(α) ≥ 0. (12)

See also [10] for further details on the SMR and on SOS polynomials.
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4 Uncertain GRNs with multivariable regulation functions

3 Stability Analysis

Let us observe that, for all i = 1, 2, ..., n, the regulation functions hi(x(t)) and
ri(x(t)) satisfy the following sector conditions

hi(s)(hi(s)−K1is) ≤ 0

ri(s)(ri(s)−K2is) ≤ 0
(13)

for any s ∈ R and K1i, K2i are non-negative [6].
Now, let us consider the sector condition for r̄(x(t)). In (6), each multivariable

regulation function r̄i(x(t)) satisfies the following condition:

r̄i(x)(r̄i(x)−K3ixi −K4iyi) ≤ 0 (14)

where K3i, K4i are non-negative and xi, yi ∈ R. Since yi ∈ {x1, x2, ..., xn}, then
we have

y = Y x (15)

where Y is a coupling matrix which determine the relationship between xi and
yi. Thus, r̄i(x(t)) satisfies the following sector condition

r̄i(x)[r̄i(x)− (K3i + K4i

n∑
j=1

Yij)xi] ≤ 0, i = 1, 2, ..., n (16)

where Yij is the ijth entry of the coupling matrix Y .

Theorem 1. Suppose that there exist matrix function P (θ), diagonal matrix
functions Λh(θ), Λr(θ), Λr̄(θ), such that the following conditions hold ∀θ ∈ Θ:

M(θ) =




M11 M12 M13 M14

# −2Λh(θ) 0n 0n

# 0n −2Λr(θ) 0n

# 0n 0n −2Λr̄(θ)


 < 0

P (θ) > 0

Λh(θ) = diag(λh1(θ), ..., λhn(θ)), λhi(θ) > 0

Λr(θ) = diag(λr1(θ), ..., λrn(θ)), λri(θ) > 0

Λr̄(θ) = diag(λr̄1(θ), ..., λr̄n(θ)), λr̄i(θ) > 0, i = 1, 2, ..., n

(17)

where

M11 = −P (θ)(A(θ) + E(θ))− (A(θ) + E(θ))T P (θ)

M12 = P (θ)B(θ) + diag(K1)Λh(θ)

M13 = P (θ)C(θ) + diag(K2)Λr(θ)

M14 = P (θ)D(θ) + [diag(K3) + diag(K4)Y ]Λr̄(θ).

(18)

Then, the uncertain GRN (6) is asymptotically stable for any θ ∈ Θ.

Proof. Consider the following Lyapunov function:

V (x(t)) = xT (t)Px(t). (19)
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Uncertain GRNs with multivariable regulation functions 5

Calculating the time derivative of V along (6), we have

V̇ (x(t)) = 2xT (t)P ẋ = 2xT (t)P [−(A + E)x(t) + Bh(x(t)) + Cr(x(t)) + Dr̄(x(t))]

≤ −2xT (t)P (A + E)x(t) + 2xT (t)PBh(x(t)) + 2xT (t)PCr(x(t))

+ 2xT (t)PDr̄(x(t))− 2

n∑
i=1

λhihi(x(t))[hi(x(t))−K1ixi(t)]

− 2

n∑
i=1

λriri(x(t))[ri(x(t))−K2ixi(t)]

− 2

n∑
i=1

λr̄ir̄i(x(t))[r̄i(x(t))− (K3i + K4i

n∑
j=1

Yij)xi(t)]

= ξT (t)Mξ(t) < 0

(20)

where ξ(t) = [xT (t), hT (x(t)), rT (x(t)), r̄T (x(t))]T .
Then, the GRN (6) is globally asymptotically stable for all θ ∈ Θ. ut

Let us observe that, in order to solve the conditions in Theorem 1, it is
required the feasibility test of an infinite family of LMIs. Thus, by restricting
our attention to the SMR introduced in Section 2.2, we could provide a sufficient
condition for Theorem 1 via an LMI feasibility test. We can write:

P (θ) = ∆(P̄ , θ{m1}, In), M(θ) = ∆(M̄, θ{m2}, I4n), Λh(θ) = ∆(Λ̄h, θ{m2}, In)

Λr(θ) = ∆(Λ̄r, θ
{m2}, In), Λr̄(θ) = ∆(Λ̄r̄, θ

{m2}, In)
(21)

where P̄ , M̄ , Λ̄h, Λ̄r and Λ̄r̄ are symmetric matrices of suitable dimensions.
The vector θ{m1} and θ{m2} contain all monomials of degree m1 and m2 in θ,
respectively.

Let L(α) be a linear parameterization of

L = {L = LT : ∆(L, θ{m2}, I4n) = 04n×4n ∀θ ∈ Rr}. (22)

Let 2bi be the degree of ti(θ), and let us define the matrix polynomial

Ti(θ) =

r∑
i=0

ti(θ)∆(Ui, θ
{m2−bi}, I4n) (23)

where Ui = UT
i , and let Zi(Ui) = Zi(Ui)T be linear matrix functions satisfying

Ti(θ) = ∆(Zi(Ui), θ
{m2}, I4n). (24)
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6 Uncertain GRNs with multivariable regulation functions

Theorem 2. Suppose there exist symmetric matrices P̄ , M̄ , Λ̄h, Λ̄r, Λ̄r̄ and a
vector α, satisfying the following LMIs:

M̄ + L(α) +

r∑
i=1

Zi(Ui) < 0, P̄ > 0, Λ̄h > 0, Λ̄r > 0, Λ̄r̄ > 0. (25)

Then, Theorem 1 holds.

Proof. Suppose that (25) holds. Since P̄ > 0 Λ̄h > 0, Λ̄r > 0, Λ̄r̄ > 0, one gets
from (21) that:

P (θ) > 0, Λh(θ) > 0, Λr(θ) > 0, Λr̄(θ) > 0 ∀θ. (26)

Now, let us consider M(θ). From M̄ + L(α) +
r∑

i=1

Zi(Ui) < 0, pre- and post-

multiplying by (θ{m2}⊗I4n)T and (θ{m2}⊗I4n), since ∆(L, θ{m2}, I4n) = 04n×4n,
one gets

0 > ∆(M̄ + L(α) +

r∑
i=1

Zi(Ui), θ
{m2}, I4n) = M(θ) +

r∑
i=1

Ti(θ). (27)

Consider any θ ∈ Θ. Since Ui > 0, from (2) and (23) we have

ti(θ) ≥ 0, ∆(Ui, θ
{m2−bi}, I4n) > 0, ∀i. (28)

This implies that:
Ti(θ) ≥ 0 ∀θ ∈ Θ. (29)

Therefore, from (27) and (29) it follows that:

M(θ) < 0 ∀θ ∈ Θ. (30)

Consequently, the conditions of Theorem 1 hold since there exist P (θ), Λh(θ),
Λr(θ) and Λr̄(θ) fulfilling (17) ∀θ ∈ Θ. ut

4 Illustrative Example

In this example, we will illustrate the application of the proposed results to
an well-known Cdc2-Cyclin B/Wee1 system [7]. In this system, Cdc2-Cyclin B
complex and Wee1 are two proteins, and the inhibition of each kinase by the
other is assumed to be approximated by a Hill function. The system has the
form: 




dz1(t)

dt
= α1(1− z1)− β1z1(vz2)

ν1

Q1 + (vz2)ν1

dz2(t)

dt
= α2(1− z2)− β2z2z

ν2
1

Q2 + zν2
1

(31)
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Uncertain GRNs with multivariable regulation functions 7

where z1 and z2 denote Cdc2, Wee1 respectively; α1, α2, β1, β2 are rate constants;
Q1 = 30, Q2 = 1 are Michaelis (saturation) constants; ν1 = ν2 = 4 are Hill
coefficients; and v is a coefficient reflects the strength of the influence of Wee1
on Cdc2-cyclin B. Here, we select v = 2.

Let us rewrite this network in the form of the GRN (6), we have

dx(t)

dt
= −[A(θ) + E(θ)]x(t) + C(θ)r(x(t)) + D(θ)r̄(x(t)) (32)

where
A(θ) =

[
α1 0
0 α2

]
, C(θ) =

[
w∗1 0
0 w∗2

]
, D(θ) =

[
0 −β1

−β2 0

]
, E(θ) =

[
β1r1(z

∗
2) 0

0 β2r2(z
∗
1)

]
,

and the regulation function ri(x(t)) equals to x4
i /(1 + x4

i ). It is easy to know
that the maximal value of the derivative of ri(x(t)) is less than 1.0652.

Let us choose the matrix variables as
A(θ) = diag(0.9− 0.2θ1 +0.3θ2, 0.5+0.1θ1− 0.1θ2), C(θ) = diag(1+ θ1, 1+ θ1),

E(θ) = diag(0.95, 0.95)∗diag(10+8θ1, 5+2θ1), D(θ) =

[
0 −10− 8θ1

−5− 2θ1 0

]
.

Remark 1. Let us observe that, the value of w∗1 , w∗2 , r1(z∗2) and r2(z∗1) in C(θ)
and E(θ) are unknown which are depended on the uncertainty parameter θ.
Depending on the properties of ri(x(t)), we simply choose r1(z∗2) = r2(z∗1) = 0.95
and w∗1 = w∗2 = 1 + θ1 in the calculations.

The set Θ = [0, 1]2 can be expressed as in (2) with ti(θ) = θi(1− θi), i = 1, 2.

Let us select K2 = K3 = diag(1.0652, 1.0652), K4 = diag(1, 1) and Y =
[
0 1
1 0

]

in order to fulfill the sector conditions.
The state trajectories of the uncertain GRN (32) are shown in Fig. 1 with

different uncertainty parameter θ1, θ2 and different concentrations of Cdc2 and
Wee1. It shows that, by solving the conditions in Theorem 2, the Cdc2-Cyclin
B/Wee1 system is asymptotically stable with all admissible parametric uncer-
tainties.

5 CONCLUSIONS

In this paper, we addressed the problem of establishing robust stability of un-
certain GRNs. Specifically, based on the Lyapunov functional method and LMI
techniques, a criteria has been established to ensure the robust asymptotical
stability of the uncertain GRNs with multivariable regulation functions. Then,
by using SMR and by adopting polynomially parameter-dependent Lyapunov
functions, the conditions for robust stability for all admissible uncertainties can
be obtained in terms of LMIs. An example with real biological model has been
used to illustrate the use of proposed methodology.
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Fig. 1. State trajectories of the Cdc2-Cyclin B/Wee1 system.
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