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Abstract. Most efficient read mappers build a Ferragina-Manzini index
of a genome sequence and then process reads against it. In order to
handle differences between reads and corresponding genome fragments,
approximate read occurrences are searched in the index. This technique
is particularly efficient for mapping reads of length ∼30bp with up to 2-3
errors, as first massive sequencers required.
However, within the last few years, in most popular sequencing technolo-
gies read length increased to 75 − 200bp. Since the number of required
index queries is exponential with respect to the number of errors, it is
hard to maintain the allowed error rate within this method.
We propose a new approach that overcomes this problem. The main idea
is to use the Ferragina-Manzini index to filter potential approximate read
occurrences. Filtering is based on the intermediate partitioning concept,
i.e. reads are split into parts, which are searched in index with reduced
number of errors.
We implemented this method in Bmap program. Our experiments show
that Bmap outperforms current methods in efficiency without sacrificing
mapping accuracy.
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1 Introduction

Output datasets of massively parallel sequencing technologies contain sequences
of millions of short DNA fragments, called reads. Usually, in the first step of
analysis reads are mapped onto a reference genome, i.e. genome locations that
best suit particular reads are found.

The most efficient read mappers [8, 12, 10, 7, 11, 13, 14] build a Ferragina-
Manzini index (FM-index) of a genome sequence and then process reads against
it. FM-index is a data structure based on Burrows-Wheeler transform of indexed
text. It allows extremely fast and memory economical locating exact sequence
occurrences in a genome. In order to locate approximate occurrences, Bowtie
[8] and BWA [10] apply neighborhood generation, i.e. generate sequences similar
to reads and search the index for them. This strategy works well when reads
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are mapped with at most 1-2 errors. When more errors are allowed, efficiency
rapidly drops since the neighborhood size rises exponentially.

Neighborhood searching may be sped up with backtracking. This technique
avoids repetitive computations in searching for words sharing suffixes. The gain
in computation time is proportional to the length of a common suffix. Thus, the
acceleration is significant if most considered errors are located at the beginning
of a read.

Bowtie creates two FM-indexes: forward for a genome sequence and mirror
for the reverse one. Read neighborhood is split into two parts based on the
error location and each index is searched for relevant neighborhood part. This
strategy enables to increase the allowed number of errors to 3. In order to allow
mapping with more errors, read seeds must be specified (first 28 bp by default).
Then approximate seed occurrences (with ≤ 3 errors) are found with double
FM-index and their extendability to whole-read alignments is verified. However,
for e > 3, this approach does not guarantee that all read occurrences with ≤ e
errors are identified.

BWA also creates two FM-indexes, but the mirror index serves only to the
calculation of lower bounds of a minimal number of errors in genome occurrences
for read prefixes. Read neighborhoods are searched with backtracking in the for-
ward index and the bounds are used to exclude from the search space neighbors
with errors aggregated at the end of the sequence. This strategy significantly
reduces search time for higher error rates and, as opposite to Bowtie, BWA may
identify all read occurrences with ≤ e errors for any e.

According to contemporary capabilities of sequencing technologies, the above
tools were designed for mapping reads of length ≤ 50bp. In this case they pro-
vide efficient mapping with satisfactory number of errors for most applications.
Approaches using other indexing methods have an order of magnitude higher
running time (e.g. MrsFAST [6]) and/or memory requirements (e.g. SHRIMP2
[2]).

Present-day sequencers output reads of length up to 75bp (5500 Series SOLiD
System), 150bp (Illumina Genome Analyzer IIx) or even 200bp (Personal Genome
Machine Sequencer). Longer reads entail more errors per read and, consequently,
rapid rise of mapping time. To allow higher error rate, FM-index-based seed-and-
extend heuristics Bowtie2 [7] and BWA-SW [11] were proposed. They save the
efficiency at the cost of the certainty of finding best mapping position.

In the present work we propose Bmap, mapping tool efficiently finding all
read occurrences with assumed number of errors. Our program is designed to
reads of length ≥ 50bp and error rates up to 10%. Bmap uses FM-index to
filter potential approximate read occurrences. Filtering is based on the interme-
diate partitioning concept [16–18], i.e. reads are split into segments, which are
searched in index with reduced number of errors. Next the extendability of fund
approximate segment occurrences to whole-read alignments is examined.

The idea of searching read subsequences in genome index is also used in seed-
and-extend methods. However Bmap thoroughly selects seeds according to read
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length and error-rate. Therefore, as opposed to heuristic approaches, it finds all
read alignments with assumed number of errors.

2 Algorithm

2.1 Genome Index

The core data structure of the Bmap program is the index of a reference genome.
It provides fast searching for exact occurrences of query sequences and extract-
ing genome subsequences. Moreover, in order to handle efficient searching for
approximate query occurrences, some additional operations dealing with partial
results of exact searching should be supported. Here is the full list of operations
required by our mapping algorithm:

Find(Q)→ R searches for all occurrences of sequence Q and returns an opaque
result R that can be used with other operations.

FindSuffixes(Q1..m)→ R1..m works just like Find, but returns results for each
suffix of Q so that Ri is the result of searching for Qi..m.

FindContinue(Q1..m, Rold, f)→ Rnew just like Find searches for all occur-
rences of Q1..m, but takes advantage of an earlier result Rold, assumed to be
obtained by searching for Qf..m, and returns a new result Rnew.

Count(R)→ k returns the number of occurrences k represented by R.

Locate(R)→ l1..k returns locations of occurrences represented by R.

Extract(b, l)→ S retrieves a subsequence of the reference sequence T : S =
T [b..b + l − 1].

It was shown in [4] that various variants of FM-index [3] are the most efficient
data structures supporting the above operations. We chose a member of FM-
index family called Succinct Suffix Array (SSA) [15] to be the core data structure
of the Bmap program. The main difference between SSA and common FM-index
used in Bowtie and BWA is that the latter stores explicitly Burrows-Wheeler
transform of a sequence, while SSA exploits the Wavelet Tree structure [5].
Wavelet trees encode sequences as collections of bit vectors and take advantage
of efficient bit vector navigation operations.

We performed a DNA-oriented SSA implementation, purposed to work with
sequences over fixed 4-letter alphabet. We also implemented its variant, called
SSAT, which explicitly stores a reference sequence. In this way, at the price of ad-
ditional memory usage, relatively expensive and substantially exploited Extract
computations are avoided. Both variants of the index have a few parameters that
determine the balance between space and time requirements of the algorithm.
The detailed description of implementation and parameter settings is included
in Supplementary Materials. For further comparison we chose four parameter
sets, presenting the range of Bmap computational requirements (see Table 2).
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2.2 Intermediate Partitioning

Let d(A,B) be a distance between sequences A and B, i.e. minimum number
of errors required to convert A into B. The following considerations apply to
both Hamming distance (every error is a symbol substitution) and edit distance
(symbol insertions and deletions are also allowed). The set of all sequences B
satisfying d(A,B) ≤ e is called e-neighborhood of A.

The following observation is a special case of a result proved in [17].

Lemma 1. Let A = A1 . . . Ak and B be two sequences such that d(A,B) < k · j.
Then at least one subsequence Ai occurs in B with < j errors.

The above lemma justifies the following 2-phase approach to the mapping
problem, called intermediate partitioning [16, 17]:

Filtration Read A is split into k segments and the genome index is searched
for (j − 1)-neighborhood of each segment.

Verification Every approximate segment occurrence is examined whether it is
extendable to a whole-read alignment.

Due to the lemma, each A-occurrence with < k · j errors will be identified in this
way.

The efficiency of intermediate partitioning depends on the balance between
the time spend by the algorithm on filtration and verification phase. The filtering
cost grows exponentially with j, so we decided to limit this parameter to 2.
Setting j = 1 in the lemma above we obtain:

Corollary 1. If A is split into e + 1 non-overlapping segments then in every
A-occurrence with ≤ e errors at least one segment has an exact occurrence.

Similarly, setting in the lemma j = 2 we obtain:

Corollary 2. If A is split into b e2c+ 1 non-overlapping segments, then in every
A-occurrence with ≤ e errors at least one segment occurs with at most one error.

The cost of the verification phase is proportional to the number of potential
read occurrences left after filtering. It depends primarily on segment length –
the shorter segment is, the higher is number of its occurrences. More precisely,
shortening segment length by one nucleotide quadruples the expected number.
In order to have ≤ 1 occurrence per segment on average, we prefer to avoid
segments shorter than 4-based logarithm of genome length.

In the case of human genome this choice results in minimum segment length
16bp. Combining this bound with the result of Corollary 2 we obtain the limit
on the allowed error number to be 2bm16c − 1, where m is the length of a read.
For example, in the case of 100bp-long reads it gives 11 errors.
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2.3 Mapping Process

In order to speed up mapping low-error reads we divided the whole mapping
process into three phases:

1. Mapping whole read without errors.
2. Mapping read segments without errors.
3. Mapping 1-neighborhoods of read segments.

The second and third phases may be not necessary depending upon the de-
sired maximal number of errors. Moreover after finding a mapping that meets
the error criteria it may be returned immediately. The default behavior is to re-
turn the mapping if it is certain to be the best one (i.e. has the smallest possible
number of errors). In particular:

– If a mapping without errors is found, it is the best.
– If a mapping with a single error is found during the second phase, it is the

best.
– If the best mapping found during the second phase has at most k− 1 errors,

it is the best one at all.
– If a mapping with at most k errors is found during the third phase, it is the

best one.

The pseudo-code for the mapping process is presented as Algorithm 2.1.
MaybeReturn(errors) indicates the points where a mapping may be returned
immediately according to the above criteria.

2.4 Practical Concerns

Two characteristics of available reference genomes complicate efficient mapping:
repetitiveness and incompleteness. In the present section we motivate our ap-
proach to these difficulties based on statistical analysis of the human reference
genome assembled by NCBI, build 37 [1]. However, similar considerations apply
to all large genomes.

Genome Repetitiveness As was shown in previous sections, Bmap relies on
finding occurrences of relatively short read subsequences and verifying the sur-
roundings of each occurrence. Although most subsequences have very few oc-
currences, there are also extremely frequent ones, due to the repetitive genome
structure. For example, > 95% of 20bp-long sequences occurring in the genome
are unique, > 99% have no more than 5 occurrences, > 99.9% no more than 10.
Furthermore, only 0.02% sequences occur 100-1000 times and only 0.002% over
1000 times.

There are two causes of extremely frequent sequences: low-complexity regions
and repetitive elements. Table 1 illustrates both. The first group is represented
by 6 most common 20bp-long sequences: 2 of them are mono-nucleotide and
next 4 sequences are built of repetitions of one bi-nucleotide pattern (there are 2
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Algorithm 2.1 Map query Q by dividing into k substrings and introducing
single substitutions

1: function Map(Q, k, e)
2: R← Find(Q) . Try searching without errors
3: if Count(R) > 0 then
4: l1..n = Locate(R)
5: return l1
6: end if
7: b1..k, e1..k ←Divide(Q, k) . Divide divides the string Q into k substrings and

returns the begin and end positions for each of them
8: S ← ∅ . Initialize a set of found approximate occurrences
9: for i← 1, k do . Search for all substrings without errors

10: R← Find(Q[bi..ei])
11: if Count(R) > 0 then
12: Verify(Q, bi, R, 1)
13: end if
14: end for
15: MaybeReturn(k − 1)
16: for i← 1, k do:
17: q ← Q[bi..ei]
18: l← |q|
19: R1..l ← FindSuffixes(q)
20: m← argmaxm{Count(Rm)= 0} . qm..l is the shortest suffix that doesn’t

have any matches
21: for p← m, l do . Search for all substrings with a single substitution
22: t← qp
23: for all s ∈ ¬t do . ¬t is the set of all symbols except the one stored in

t
24: qp ← s . Introduce the substitution
25: r ←FindContinue(q, p+ 1, Rp+1) . Search for the modified substring
26: if Count(r) > 0 then
27: Verify(Q, bi, r, k)
28: end if
29: end for
30: qp ← t . Restore the original value
31: end for
32: end for
33: return min(S)
34: end function
35: function Verify(Q,R, o,mrerrs) . Query Q, result R of searching for Qo..

36: l1..n ← Locate(R) . Get matches
37: for i← 1, n do
38: errs← d(Q,Extract(li − o, |Q|)) . Calculate the number of errors
39: if errs < e then
40: S.add(〈errs, li − o〉)
41: MaybeReturn(mrerrs)
42: end if
43: end for
44: end function
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Substring Occurrences

TTTTTTTTTTTTTTTTTTTT 451296

AAAAAAAAAAAAAAAAAAAA 447468

GTGTGTGTGTGTGTGTGTGT 246066

ACACACACACACACACACAC 243148

TGTGTGTGTGTGTGTGTGTG 241608

CACACACACACACACACACA 238826

CTCCCAAAGTGCTGGGATTA 170026

TAATCCCAGCACTTTGGGAG 169758

CCTCCCAAAGTGCTGGGATT 166855

AATCCCAGCACTTTGGGAGG 166726

Table 1. Most frequent genome subsequences of length 20

Fig. 1. Percentage of mapped reads and mapping time vs limit on the number of
segment occurrences.

pairs of complementary sequences). The remaining 4 sequences origin from both
strands of a 21bp-long fragment of the Alu repetitive element.

Frequently occurring read segments drastically lengthen the verification phase.
Moreover, if all the segments of a read have plenty of occurrences, then most
likely the whole read occurs multiple times. In this case, the profit of mapping the
read is usually poor, because uncertain localizations are rather useless for fur-
ther analysis. Therefore we limit the number of verifications for a single segment.
This approach does not obstruct mapping reads with several frequent segments
– they are still mappable unless all their rare segments are highly erroneous.

We set the default limiting number of segment occurrences to 100. It means
that only 0.06% of 16bp-long segments occurring in the human genome overdraws
the limit and this percentage declines for longer segments. Results presented in
Figure 1 show that our choice guarantees pretty fast mapping without sacrificing
quality.
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Genome Incompleteness The total length of unknown fragments in human
reference genome accounts for about 8% of the whole genome. Figure 2 shows
that vast majority of them is concentrated in very long contiguous series. Di-
rect incorporation of ambiguous nucleotides into FM-index (i.e extending the
sequence alphabet with a fifth symbol) would complicate the algorithms and
downgrade its performance. In BWA this problem is overcome by replacing un-
known fragments with random nucleotides. Authors argue that the insignificant
probability of mapping a read into a random sequence legitimates this method.
Our approach is similar, but we filled unknown fragments with a mono-nucleotide
(G) sequence instead of a random one. In this way potential fake mappings may
be avoided by simple read preprocessing.

Fig. 2. Unknown parts (gaps) in the genome

3 Results

Benchmarking mapping programs is a difficult task for a few reasons. First, there
are different variants of the mapping problem. Most programs try to find the
best read occurrence, but some of them have another objective, e.g. MrsFAST
locate all read occurrences with an assumed number of errors. Second, there are
many possible evaluation objectives, e.g. mapping quality, memory usage, speed.
In a fair comparison, when one of them is concerned, the rest should be adjusted
similarly in all evaluated programs. Furthermore, different evaluation objectives
entail their specific problems. For example, it is hard to compare the efficiency
of programs for CPU- and GPU-based computations. Similarly, evaluation of
mapping quality highly depends on how does benchmarking data and a quality
score fit the mapper’s model of sequence similarity.

We decided to focus on efficiency objectives. Consequently, we restricted our
attention to FM-index-based mappers (Bowtie, BWA, Bowtie2 and BWA-SW),
since other approaches are an order of magnitude less efficient. Moreover, we
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Fig. 3. Percentage of mapped reads vs number of allowed errors for reads of size 50−
200bp.

excluded mappers for GPU-based computations: SOAP3 [13] and CUSHAW [14]
due to inability of fair efficiency comparison.

We established clear and strict quality criteria in program parameter settings:
for every read, its genome occurrence with minimal number of mismatches should
be returned unless this number exceeds an assumed threshold. Namely, Bowtie
was run with options --best -v ERRORS, where ERRORS is the maximum allowed
number of errors. We ran BWA with -o 0 -R 1 -e ERRORS and Bowtie2 with
--ignore-quals --mp 1,1 --rfg 100,0 --rdg 100,0 --score-min C,-ERRORS.
Finally, in BWA-SW we set the options -b 0 -g 100 -w 1 -T MINSCORE, where
MINSCORE is the difference between read length and the maximum number of er-
rors.

Assumed parameter setting guarantees similar level of specificity for all bench-
marked programs. Consequently, sensitivity of mapping is determined by the
percentage of mapped reads. As Figure 3 shows, the level of mappable reads
is rather similar for all programs expect BWA-SW (and Bowtie2 in the case of
50bp-long reads). Only for reads longer than 50bp and higher error rates Bmap
performs slightly better than competitors (i.e BWA and Bowtie2, since Bowtie
maps reads with ≤ 3 mismatches).

Memory usage of all programs is reported in Table 2. Bmap may be cus-
tomized to fit the available memory. Its requirements are similar to those of
Bowtie and smaller than those of BWA and Bowtie2. BWA-SW requires much
more memory than all other programs.

Mapping speed tests were run on a server with two Intel Xeon E31245 CPUs
and 16GB of RAM. Human genome assembled by NCBI, build 37 [1] was used
as a reference. Synthetic reads were generated using a wgsim tool version 0.3.0
[9] with default parameters. It takes a genome as an input and randomly chooses
positions from which reads are generated. Moreover, errors and mutations are
introduced to reads.
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Fig. 4. Mapping time vs number of allowed errors for reads of size 50− 200bp.

The computational time of mapping is reported in Figure 4. Both SSA-based
Bmap versions ar as fast as Bowtie and BWA. BmapS is not much slower than
BmapB and can be a good solution for low memory environments. Bowtie2
and BWA-SW are relatively slow for low error rates, but their speed is almost
independent of the number of errors. Consequently, for long sequences and very
high error rates they are 3 − 4 times faster than BWA, BmapS and BmapB.
BmapT and BmapL are the fastest in all cases.

4 Conclusion

We proposed Bmap, a new algorithm for mapping reads from next generation
sequencing. Similarly to Bowtie and BWA, Bmap is designed to find all read oc-
currences with assumed maximum number of errors. Our program has highly cus-
tomizable balance between memory requirements and computation time: Bmap
with SSA index maps reads as soon as Bowtie and BWA using less memory;
Bmap with SSAT index works much faster than competitors with similar mem-
ory requirements. The speed-up is most evident for higher error rates, because

Name Index type Index size for human genome

BmapS SSA 1.8GB
BmapB SSA 2.4GB
BmapT SSAT 2.4GB
BmapL SSAT 2.9GB
Bowtie FM-index 2.3GB
BWA FM-index 3.1GB
Bowtie2 FM-index 3.2GB
BWA-SW FM-index 5.2GB

Table 2. Memory requirements of compared mapping programs. BmapX refers to
Bmap variants.
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intermediate partitioning strategy of Bmap is better suited for this case than
neighborhood generation with backtracking used in the other tools.

Two seed-and-extend heuristics: Bowtie2 and BWA-SW were included into
our comparison. These tools are also designed to map long reads with high
error rate, but their preferred model of sequence similarity is different than
the one considered in this study. Therefore the reduction of their mapped reads
percentage, especially visible for BWA-SW, is probably a side effect of consistent
parameter setting for our benchmark. On the other hand, computation time of
Bowtie2 and BWA-SW is almost independent of the number of errors, so these
tools are very fast when mapping long reads with high error rate. However, even
for such data Bmap with SSAT-based index works over 1.5× faster and occupies
less memory space.
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15. Mäkinen, V., Navarro, G.: Succinct suffix arrays based on run-length encoding.
Nordic Journal of Computing 12(1), 40–66 (2005)

16. Myers, E.: A sublinear algorithm for approximate keyword searching. Algorithmica
12, 345–374 (1994), http://dx.doi.org/10.1007/BF01185432, 10.1007/BF01185432

17. Navarro, G., Baeza-Yates, R.: A hybrid indexing method for approximate string
matching. Journal of Discrete Algorithms (JDA) 1(1), 205–239 (2000), special issue
on Matching Patterns.

18. Navarro, G., Baeza-Yates, R., Sutinen, E., Tarhio, J.: Indexing methods for ap-
proximate string matching. IEEE Data Engineering Bulletin 24, 2001 (2000)

IWBBIO 2013. Proceedings Granada, 18-20 March, 2013 364




