
FQbin: a compatible and optimized format for
storing and managing sequence data

Daŕıo Guerrero-Fernández, Rafael Larrosa, and M. Gonzalo Claros?

University of Málaga, Plataforma Andaluza de Bioinformática-SCBI,
C/ Severo Ochoa 34, 29590 Málaga, Spain
{dariogf,rlarrosa,claros}@uma.es,

http://www.scbi.uma.es

Abstract. Existing hardware environments may be stressed when stor-
ing and processing the enormous amount of data generated by next-
generation sequencing technology. Here, we propose FQbin, a novel and
versatile tool in C for compressing, storing and reading such sequencing
data in a new and Fasta/FastQ-compatible format that outperforms
the existing proposals. It is based on the general-purpose zLib library
and offers up to 10X compression. The compressed file is read and decom-
pressed up to 3X faster than a FastQ file is read, and a nearly ‘instant’
random access to every entry in the FQbin container is allowed. Fast file
reading is maintained even in shared storage environments, where dif-
ferent processes are simultaneously accessing the same FQbin file. Slow
networks can take even more advantage from FQbin.

Keywords: FastQ, compression, zLib, NGS, pipeline, workflow

1 Introduction

The advent of next-generation sequencing (NGS) techniques enabled the gen-
eration of an overwhelming and ever growing amount of information in short
periods of time [5]. This may saturate existing hardware environments; the main
computational concerns is related to CPU time required to process such amount
of data, storage capabilities, and data transmission over not so fast networks. In
fact, storage systems are the real bottleneck in relation to NGS data processing
[5].

Compression is obtained when sequences and the accompanying quality val-
ues (QVs) [6] are transformed in the more compact FastQ format [3]. Due to the
4-nucleotide nature of DNA sequences, it is immediate to think about a better
compression based on two-bit conversion storage [1]. This solution is adequate
for compressing files containing alignments and mapping, but does not fit when
more information, such as QVs, is to be gathered with sequences. DSRC algo-
rithm [4] is worth mentioning, although only compresses FastQ files, since it is
appropriate for most genomics approaches. It uses an internal block structure to

? Corresponding author

IWBBIO 2013. Proceedings Granada, 18-20 March, 2013 337

2 Guerrero-Fernández et al

provide random access and decrease the file size from four to six times. There
are other compressing methods that do not offer sufficient compression rates,
or require a great amount of CPU time for decompression and loading every
time the data are accessed [9]. Therefore, when one wants to compress data con-
taining sequences, QVs and something else (e.g., metadata, flowgrams, images),
compression tools such as DNACompress [1], PBAT, DNAZip, SlimGene, MZip,
ReCoil, or SpeedGene [9], to cite a few, are not appropriate. Finally, binary
SFF (Standard Flowgram Format) files contain sequence IDs, sequences, base
call QVs, flowgram, and can contain information on how sequences need to be
clipped; unfortunately, the final file size does not present any advantage.

Since Fasta, Qual and FastQ formats are widely used in bioinformatics,
there is no option to think about a complete transition to a new, incompat-
ible format. Therefore, here it is described FQbin, a file container and a set
of command line tools in C that provide—using a general purpose compres-
sion algorithm—a compressed, Fasta/FastQ-compatible format that improves
compression size and sequence access compared to other algorithms.

2 Methods

FQbin is based on the compression library zLib (http://zlib.net/) wrapped
in a shared library with a set of C command line tools for compression, decom-
pression and random access. It is additionally available as a Ruby gem.

2.1 FQbin container format

FQbin container gathers individual Fasta, Qual and Extras fields compressed
in separate chunks for each sequence. Compressed chunks are then saved to disk
interleaved with a header field for each sequence that will facilitate the random
access to any sequence. The simplified scheme of the FQbin container is shown
in Fig. 1. It starts with a file header, in which the first 4 bytes define its variable
length, then a variable string containing a format identifier, and then version and
subversion fields to deal with future upgrades. Next, the first compressed block
of data contains a maximum of 10 000 sequence records, compressed as a unique
zLib stream. Every sequence record in the compressed block contains a sequence
header and the remaining data (base calls, QV, Extras). The sequence header
starts with 4 bytes that define its variable length. This is followed by four string-
fields indicating the name (that serves as an identifier [ID] for random access),
the sequence length, the number of QVs, if any, and the length of Extras,
if available. Once the block is full of records, the stream is closed and a new
one is created. Organization in blocks requires decompression only of a single
block—instead of the whole file—to gain access to a particular sequence, saving
time and disk usage. As will be explained later (section 3.3), this separation in
blocks also serves as a kind of firewall against data corruption. Compatibility
with current and legacy software is guaranteed since the FQbin contents can be
streamed to another program that reads Fasta/Qual and FastQ formats (see
section 2.4 below).

IWBBIO 2013. Proceedings Granada, 18-20 March, 2013 338

FQbin: a compatible, optimized sequence format 3

SEQUENCE HEADER

SEQUENCE RECORD

FILE HEADER
compressed

block 1

compressed
block 2

compressed
block 3

FILE HEADER

FILE HEADER LENGTH-4 digit STRING VERSION SUBVERSION

SEQNAME FASTA LENGTHSEQ HEADER
LENGTH-4 digit QUAL LENGTH EXTRA LENGTH

SEQUENCE HEADER

 SEQUENCE DATA
 QUAL DATA

 EXTRA DATA

SEQ1

SEQ3

SEQ2

SEQ4 ……

Fig. 1. Scheme of FQbin container. The general format structure is shown on the left.
Detailed description of every block is on the right. See text for details

2.2 Random access

FQbin container and tools assure a fast random access to sequences by their
ID by means of two external and regenerable index and hash files (see section
2.4). Accessing to a random sequence means finding the ID in the small, al-
phabetically ordered, hash file to get its position in the compressed index file.
The index file is accessed directly at the position of the ID, which indicates the
location of the sequence information corresponding to such ID within the main
FQbin container. Finally, the compressed block containing the target ID is read
and inflated in RAM, and sequence, QVs and Extras are directly retrieved.
Therefore, only a small portion of data is loaded to get access to the sequence,
and only a small RAM portion is used even if the file size is much bigger than
the RAM size. Moreover, the uncompressed sequence is dumped to stdout in
Fasta/FastQ format, avoiding the need of further sequence readers.

2.3 Simplifying quality values

Since QVs are quite repetitive in the useful sequence [10], an additional QV
compression step was included. The following rules are applied to all QVs of
every sequence, and only the optional steps involve some shallow loss of QV
information.

– Conversion of QV numerical data into FastQ characters when original data
are given as Fasta + Qual files.

– Discretization (optional): QV range (usually 1-40 in NGS) is divided into
intervals of customizable length; QVs within each interval are replaced by

IWBBIO 2013. Proceedings Granada, 18-20 March, 2013 339

4 Guerrero-Fernández et al

their corresponding discretized QV in order to reduce complexity and pro-
mote deeper compression by zLib. The discretization formula is
QVdiscretized[i] = trunc(QV [i]/customized length) × customized length.

– Filtering (optional): since the use of QV in NGS post-processing is usually
impractical [2, 10], only low QVs could have some interest in order to trim
low quality base calls. Therefore, QVs qualified as good (usually QV ≥ 20;
the cutoff is customizable) are replaced by this cutoff value.

– Simplification of repeated QVs: when the resulting QVs of a sequence have
all the same value, they are stored as one single value. At decompression,
when a single QV is read, it is repeated the number of times indicated by
the sequence length.

2.4 Main FQbin command-line tools

idx fqbin is for re-creation of index file. hash fqbin is for re-creation of hash
file. read fqbin is for random access to a sequence. A complete FQbin container
can be constructed as mk fqbin -e extra information.fasta -o outputfile.fqbin

inputfile.fastq. Loading of a complete FQbin file and sending every se-
quence to Blast to be compared against blast database can be commanded as
iterate fqbin -F file.fqbin | blastn -db blast database. Other software
that do not accept pipelining can be used by means of named pipes as follows:

mk_fifo nam_pipe1 # creating the named pipe

bowtie2 index nam_pipe1 & # bowtie2 uses the pipe

iterate_fqbin file.fqbin > nam_pipe1 # sending data into the pipe

rm nam_pipe1 # deleting the named pipe

2.5 Tests

Three different classes of sequences were used: one Illumina dataset SRR314795
(21,908,723 reads, 3.9 GB), one Roche 454/FLX+ SRR073389 (811,509 reads,
0.9 GB) and one Fasta file containing sequences without QVs of the first 10
human chromosomes (1.6 GB: AC 000133.1 to AC 000142.1). FQbin was com-
pared against general compression algorithms, such as Zip (widely used), gZip
(a wrapper for zLib), BSC (a high performance file compressor based on lossless,
block-sorting data compression algorithms [7]) and DSRC (the better published
compressor for FastQ data [4]). All tests have been performed on a quad-core
iMac at 2.8 GHz with 8 GB of RAM, using a shared storage mounted with samba
through a 1 Gbit/s or 100 Mbit/s Ethernet network. Time measurements were
performed with the Unix time command.

3 Results and Discussion

It will be demonstrated that FQbin is a robust development that provides an
appropriate, compressed format for NGS, and a nearly instant access to any
sequence at any moment. Getting the whole dataset from the FQbin container
is faster any other possibility.

IWBBIO 2013. Proceedings Granada, 18-20 March, 2013 340

FQbin: a compatible, optimized sequence format 5

2

4

6

8

10

C
om

pr
es

si
on

 fa
ct

or

BSC
Zip
gZip
DSRC
FQbin
FQbin + QV filters

0

300

600

900

1200

1500

454/FLX+ Fasta Illumina

C
om

pr
es

si
on

 ti
m

e
(s

)

BSC
Zip
gZip
DSRC
FQbin
FQbin + QV filters

A

B

Fig. 2. Compression capabilities of FQbin compared to other compression algorithms.
A: Compression factor with respect to the uncompressed file size calculated as original
file size divided by the compressed file size (greater is better). B: Time elapsed for file
compression (greater is worse).

3.1 Compression capabilities

When comparing FQbin with other general and specific compressors (Fig. 2),
differences in compression factor become more remarkable with the biggest file
(Illumina data, 3.9 GB), with BSC, FQbin and DSRC providing the better com-
pression factors in all cases (Fig. 2A). It can be seen that as the file size increases,
compression factor of FQbin begins to outperform the other compressors. BSC
compares well with FQbin in compression factor, but compression time is clearly
increasing for big files (Fig. 2B), suggesting that it is quite sensitive to the orig-
inal file size. DSRC does not outperform FQbin compression of Illumina data
and is not able to manage Fasta files, but is the fastest compressor when FastQ
files are involved. gZip, whose compression engine is also zLib, does not super-
sede FQbin, although it is a little bit faster during compression. FQbin with
QV filtering is faster and provides higher compression factor with Illumina data
than FQbin without filtering; this confirms the repetitive nature of most QVs
in this file, illustrating the advantages of QV filtering [10]. In literature, Speed-
Gene claims for a compression factor ranging from 16 to several hundreds [9],
but it cannot be compared with FQbin since SpeedGene compresses based on
a sequence reference for genome-wide association studies, while FQbin is fo-
cused on storing the whole original data. For genomic data, compression factor
is more limiting than compression time, since files will be compressed only once.

IWBBIO 2013. Proceedings Granada, 18-20 March, 2013 341

6 Guerrero-Fernández et al

Therefore, results in Fig. 2 show that FQbin presents a good balance between
compression factor and compression time, and demonstrate that it compares well
with other compression algorithms, being the best for Illumina data.

3.2 Reading compressed files

0

1

2

3

454/FLX+ Illumina

FQ
bi

n
sp

ee
d-

up

1 Gbit/s | 1 X
1 Gbit/s | 4 X
100 Mbit/s | 4 X

Fig. 3. Whole-file reading speed-up
(greater is better) due to FQbin with
respect to the FastQ reader when
454/FLX+ and Illumina files are read
disabling the filesystem cache on networks
of 1 Gbit/s and 100 Mbit/s. “1 X” means
that only one process is reading the file; “4
X” means that four different processes are
accessing the same file at the same time.

Although the file size of a FQbin
container is shorter than the original
FastQ file (Fig. 2), its more com-
plex content (Fig. 1) could make one
think that reading the complete set
of sequences could take longer from
the FQbin container than from a
simple, uncompressed FastQ file. An
optimized script in C was therefore
written for time-efficient reading of
FastQ files (Guerrero-Fernández, un-
published results). It should be noted
that files compressed using Zip, gZip,
BSC or DSRC can only be converted
to FastQ files that the optimized
script must read. Therefore, if FQbin
outperforms this script in reading flat
FastQ files, it will be more advanta-
geous than any other compression algorithm. Using the same files as above,
FQbin reads the whole 454/FLX+ file in 26 s and Illumina file in 87 s, being 2-3
times faster than the specific FastQ reader (Fig. 3) and DSRC (63 s and 230 s,
respectively). This behavior was also remarkable when four concurrent processes
were reading the same file (Fig. 3, ‘4 X’ columns), particularly when big files
are read under slow networks (100 Mbit/s): loading the Illumina data decreased
from 3329 s (FastQ) to 1137 s (FQbin), providing an speed-up of 2.9X. Efficient
reading of FQbin is the result of reading a smaller file and fast data inflation
in RAM. In conclusion, FQbin is not only saving disk space, but also saving
accessing time to the file, speeding-up the sequence loading; all together allow a
more optimized use of computing resources.

Compressors compared to FQbin in Fig. 2 require the inflation of the com-
plete file to retrieve a single sequence, but DSRC and FQbin can access to any
particular sequence entry without reading or inflating the whole file. The effi-
ciency in random access can then be assessed comparing the time elapsed in
reading the first and the last entry of the file (Table 1). As expected, the sequen-
tial process for the FastQ file takes longer as the file size increases, while reading
the last entry was 29X (454/FLX+) to 8.8X (Illumina) faster for FQbin simply
using the index file. Since DSRC behaves better reading the last sequence, the
hash index file was included to provide a nearly ‘instant’ access to any entry in
FQbin, that is, a speed-up ranging from 86X (454/FLX+) to 415X (Illumina).

IWBBIO 2013. Proceedings Granada, 18-20 March, 2013 342

FQbin: a compatible, optimized sequence format 7

Moreover, random access of FQbin is driven by ID, while DSRC use the ordinal
position, making it less useful.

Table 1. Accessing time for the first and
the last entries of a file

Tested format 454/FLX+ Illumina

FastQ 1st 0.19 0.14
FastQ last 37.08 176.30

DSRC 1st 1.36 0.74
DSRC last 1.06 0.79

FQbin 1st 0.24 0.25
FQbin last 1.27 19.94

FQbin hashed 1st 0.219 0.242
FQbin hashed last 0.429 0.423

In conclusion, FQbin is also an
appropriate format for storing and
quick accessing sequences, since data-
loading process of one sequence (Table
1) or the whole file (Fig. 3) takes less
time than using any other sequence
compressor.

3.3 Robustness of FQbin
container

When copying files, data are read
from the original disk, stored in RAM, and later written down to disk. Since
RAM capacity of current personal computers is in constant increase, and most
of them use RAM without error-correcting code (ECC), RAM corruption prob-
ability is not negligible. Moreover, managing NGS data involves files of several
gigabytes, which is also increasing the probability of data corruption. Although
this concern is usually absent when computers with ECC memory are involved,
personal computers are always operating on several steps of NGS managing.
Users are not usually alerted of file corruption during copying, but since FQbin
is based on zLib, and zLib uses an internal CRC (checking redundancy code)
for integrity verification, FQbin notifies the user when some corruption occurred
while copying, allowing users to discard the corrupted file and copying again the
original file.

Single-bit corruption of text files does not hinder its reading, even though a
minor, unnoticed change in a sequence can lead to undesired side-effects. The
same corruption in regular binary files (e.g. compressed or SFF files) can make
the whole file unrecoverable. This drawback was minimized in FQbin by storing
compressed data in several independent blocks (Fig. 1): corruption of one block
does not affect the other blocks, and most sequences can be recovered.

4 Conclusions

The FQbin shared library in C offers the following advantages: (i) it provides
storage of sequences and/or QVs and/or Extras in the same file, expanding its
use beyond the nucleotide sequences. In fact, EuroPineDB database [8] uses the
same library to retrieve contigs within large ACE files. (ii) It provides direct-
data-retrieving functions supporting input/output for Fasta, Qual and FastQ
formats, which extends its use from crude FastQ reads to curated Fasta se-
quences. Additionally, it allows the compressed information to be easily pipelined
from/to other programs, assuring compatibility with existing software without
any recoding. (iii) It improves the storage and the analysis of NGS data in cur-
rent hardware environments. (iv) The file size decrease compares well with other

IWBBIO 2013. Proceedings Granada, 18-20 March, 2013 343

8 Guerrero-Fernández et al

compression algorithms and formats, improving it as the file size increases, es-
pecially in slow networks. (v) It reads the same amount of data in less time than
others and provides nearly ‘instant’ access to any sequence by ID, regardless its
position in the container.

Acknowledgement

The authors gratefully acknowledge the computer resources and technical sup-
port provided by the Plataforma Andaluza de Bioinformática of the University of
Málaga, Spain. This study was supported by grants from the Spanish MICINN
(BIO2009-07490) and Junta de Andalućıa (P10-CVI-6075), as well as institu-
tional funding to the research group BIO-114.

References

1. Xin Chen, Ming Li, Bin Ma, and John Tromp. Dnacompress: fast and effective
dna sequence compression. Bioinformatics, 18(12):1696–8, Dec 2002.

2. Manuel Gonzalo Claros, Roćıo Bautista, Daŕıo Guerrero-Fernández, Hicham Ben-
zerki, Pedro Seoane, and Noé Fernández-Pozo. Why assembling plant genome
sequences is so challenging. Biology, 1:439–459, 2012.

3. Peter J A Cock, Christopher J Fields, Naohisa Goto, Michael L Heuer, and Pe-
ter M Rice. The sanger fastq file format for sequences with quality scores, and the
solexa/illumina fastq variants. Nucleic Acids Res, 38(6):1767–71, Apr 2010.

4. Sebastian Deorowicz and Szymon Grabowski. Compression of dna sequence reads
in fastq format. Bioinformatics, 27(6):860–2, Mar 2011.

5. Editorial. Prepare for the deluge. Nat Biotechnol, 26(10):1099, Oct 2008.
6. B Ewing and P Green. Base-calling of automated sequencer traces using phred. ii.

error probabilities. Genome Res, 8(3):186–94, Mar 1998.
7. P. Fenwick. Proceedings of the 19th Australasian Computer Science Conference,

chapter Block sorting text compression, pages 1–10. University of Melborune, 1996.
8. Noé Fernández-Pozo, Javier Canales, Daŕıo Guerrero-Fernández, David P Villalo-

bos, Sara M Dı́az-Moreno, Roćıo Bautista, Arantxa Flores-Monterroso, M Ángeles
Guevara, Pedro Perdiguero, Carmen Collada, M Teresa Cervera, Alvaro Soto, Ri-
cardo Ordás, Francisco R Cantón, Concepción Avila, Francisco M Cánovas, and
M Gonzalo Claros. Europinedb: a high-coverage web database for maritime pine
transcriptome. BMC Genomics, 12:366, 2011.

9. Dandi Qiao, Wai-Ki Yip, and Christoph Lange. Handling the data management
needs of high-throughput sequencing data: Speedgene, a compression algorithm for
the efficient storage of genetic data. BMC Bioinformatics, 13:100, 2012.

10. Raymond Wan, Vo Ngoc Anh, and Kiyoshi Asai. Transformations for the com-
pression of fastq quality scores of next-generation sequencing data. Bioinformatics,
28(5):628–35, Mar 2012.

IWBBIO 2013. Proceedings Granada, 18-20 March, 2013 344

