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Abstract. The modern high-throughput sequencing methods provide
massive amounts of genome-focused, DNA-positioned data. This data
is often represented as a function of the DNA coordinate (e.g. cover-
age). The genome- or chromosome-wide correlations between data from
different sources may provide information about functional biological
interrelation of the investigated features, e.g., trancription and histone
modification. The task to compute the correlation was already success-
fully solved for interval annotations ([1]) as well as for coverage (func-
tional) data ([2], [3], [4]). The key idea of the correlation studies is that
two features that are similarly distributed along a chromosome may be
functionally related. The point we are addressing here is a that peaks of
dependent functional features can be located in a similar, although some-
what different, way. To account for these similarities, we propose here a
fast method for calculation of kerneled correlation between two numeric
annotations of the genome. The kernel represents the mutual position
of related features; e.g., a Gaussian shape corresponds to ’somewhere
around’, etc.
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Introduction

Current experimental techniques generate large amounts of data related to the
genome. This information is generally aggregated in publicly available storages,
such as the UCSC Genome Browser [5], Epigenomic Roadmap [6], or ENCODE
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2 Fast assessment of the correlation

[7]. The information that is linked to the genome (genomic feature) usually is
represented in one of two ways: either as intervals (for example, the location
of genes, SINE elements, CpG-islands, etc.) or as a continuous distribution (for
example, the number of reads in RNA-seq, or the conservation score of the
sequence).

The relation between different kinds of such data can facilitate understand-
ing of the underlying biological processes. Comparative genomic and epigenetic
studies that are based on this idea (see, e.g., [8–11]) and specialized tools for
data integration and visual analysis [12–15] rapidly emerge nowadays.

A common method for comparison of genomic features is based on their
interval representation [4]. In this approach, the association is measured on the
basis of weight overlap of intervals [4, 1] or of inter-interval distances [16, 17, 1].
The latter approach can reveal a distant interaction that occurs between genomic
features. All the interval approaches binarize non-interval data before analysis;
therefore, the results are dependent on parameter choice.

Several statistical methods that estimate the association between genome-
wide numerical features have been proposed recently. They are based on different
measures of similarity, e.g correlation [18], the number of clusters of transcription
factor binding sites [19], or distances [20, 21]. The likelihood that the observed
values were obtained by chance can be obtained either from Monte Carlo sim-
ulations [20, 21, 18] or from analytical assessment using parametric models [22].
A complete review is presented in [23].

Here, we propose a universal method for comparison of genomic features. The
compared features can be either discrete (e.g., genes or repeats) or continuous
(e.g., the level of histone methylation CHiP-Seq signal). Moreover, the method
accounts both for local and distant similarities. The method relies on an inte-
gral measure of the similarity that is calculated by the Fourier transform. The
measure is calculated in a set of windows. It allows not only to make assertions
about the similarity of the features across the genome, but also to detect genomic
fragments with unusual behavior. The method is tested using a comparison of
histone modification marks and the mRNA-seq signal.

Methods

A generalisation of Jaccard measure

Assume two predefined sets of intervals F,G. A Jaccard measure can be used
for comparison of these two sets:

J =
F
⋂
G

F
⋃
G

Each set of intervals can be described with an indicator function:

f(x) =

{
1, x ∈ F
0, x /∈ F
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Using indicator functions, the numerator can be written as
∫
f(x)g(x)dx. The

Jaccard measure detects only strong overlap of intervals. If intervals F and G
are spatially close, but do not overlap, the Jaccard measure will be equal to zero.
To circumvent this, we can modify numerator in the above definition as follows:

Q(f, g) =

∫ ∫
f(x)g(y)ρ(y − x)dxdy (1)

where ρ is some positive kernel. In our analysis, we will ignore the denominator;
we will introduce other normalization later. Equation (1) has two important
features. First, in addition to the overlap, it reflects teh proximity of interval
sets. Second, it can be applied to an arbitrary genome profile, rather than only
to interval sets.

The kernel function ρ(y − x) can have different forms. If the aim is sim-
ply to calculate the correlation between two features, the Gauss kernel can be
used ρ(z) = exp

(
−z2/σ2

)
; parameter σ reflects the width of the kernel. A non-

symmetrical kernel can be also used, for example, if we are interested in analysing
the chromatin properties only in upstream regions of genes.

Fourier analysis

Let f(x) and g(x) be genome-based sets of features (observations). A similarity
measure of these features that is based on kernel ρ is defined by Equation (1).
All integrands in this equation can be presented as a Fourier series with respect
to some orthonormal (complex) basis {φi}:

f(x) =
∑
i

fiφi(x); g(x) =
∑
i

giφ
∗
i (x); ρ(y − x) =

∑
i,j

ρi,jφi(x)φ∗k(y)

Here, φ∗i (x) means complex conjugation. Then the integral can be rewritten as:

Q(f, g) = Re

 L∫
0

L∫
0

∑
i,j

fiφi(x)φ∗j (x)
∑
k,l

ρj,lgkφk(t)φ∗l (t)dtdx

 =

Re

∑
i,k

figkρi,k


Let the basis function φk(x) to be a standard basis of Fourier transformation:

φk(x) = eikx·2π/L

Fourier transformation of ρ(y − x) is:

ρ(y − x) =
∑
k

ρk · eik(y−x)·2π/L =
∑
k

ρk · φk(y)φ∗k(x)
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Our similarity measure becomes:

Q(f, g) = Re

 L∫
0

L∫
0

f(x)g(y)ρ(y − x)dxdt


= Re

∑
k,l,m

fkglρm

L∫
0

φk(x)φ∗m(x)

L∫
0

φ∗l (y)φm(y)dydx


Here, we use the property of basis functions φk(y−x) = φ(y)·φ∗(x).

∫
φk(x)φ∗l (x)dx =

δkl because the basis is othonormal. Finally, we obtain a simple formula:

Q(f, g) = Re

(∑
k

fk · gk · ρk

)
(2)

Value Q(f, g) is a scalar product of two functions Q = 〈f, g〉. We can normalise
our measure and define the correlation coefficient:

r =
Re
(〈
f̃ , g̃
〉)

√(〈
f̃ , f̃

〉
· 〈g̃, g̃〉

) (3)

where f̃k = fk − Mean(f); g̃k = gk − Mean(g). The correlation coefficient
r ∈ [−1, 1].

Permutation test

As FFT allows very quick integration of kerneled convolutions, we assess the sta-
tistical significance by permutations. As a null model representing the behaviour
in the absence of a dependence, different models can be used, depending on our
expectations about the spatial properties of features. The most common null
distribution is obtained by setting the corresponding between the first feature in
a window and the second feature in a randomly chosen window. As a result of
the test, we obtain two distributions of correlations of the two analyzed features.
The first is for all the (non-overlapping) windows in the investigated region (e.g.
in a chromosome or in the whole genome), and is referred to as the real data. The
second distribution is obtained by permutations; e.g., we relate random pairs of
windows and correlate the first feature form the first window and the second
feature from the second window. The main test we apply on these two distribu-
tions is the Wilcoxon that tests whether the medians of the distributions are the
same. If the median of the real data distribution is significantly higher than that
for permutations, the two sets of features are positively correlated. If it is sig-
nificantly lower, negative correlation is detected. Additionally, the distributions
contain a lot information about the relations of the features: we can compare
the shapes of the distributions, analyse the number of modes, the weight of tails,
etc, thus detecting the presence of genome regions that provide unusual values
of correlation.
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Results

To test the suggested method, we analysed the interrelation between the histone
modification marks that are known to be the marks of eu- and hetero-chromatin,
and the relation between two of them (one for each type) and the mRNA-seq
signal. All the data were taken from Human Epigenome Atlas (http://www.
genboree.org/epigenomeatlas) for Fetal Brain tissue.

Fig. 1 shows the result of our method when applied to three features: H3K4me1
(euchromatine histone modification), H3K27me3 (heterochromatine histone mod-
ification), and mRNA-Seq. As expected (see, e.g., [24]), H3K4me1 is positively
correlated with mRNA, and negatively correlated with H3K27me3. The results
are in concordance with a similar test for correlation between highly transcribed
gene promoters and these marks [1].
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Fig. 1: Density for correlation function (a) for histone modification H3K4me1
and mRNA-Seq (b) for histone modification H3K27me3 and mRNA-Seq. P-
value is calculated using Wilcoxon test. Red — background distribution; Blue
— observed distribution.

Fig. 2 shows the results of a consistency test on the histone marks. We tested
the correlation of an accetylation euchromatine (’active’) mark with two methy-
lation ’active’ marks, and the correlation of the accetylation ’active’ mark with
a methylation heterochromatine (’repressive’) mark. As it could be expected,
the first two tests revealed a positive correlation, while the last test revealed a
negative correlation.

Conclusion

We have developed a novel method for fast assessment of the correlation between
pairs of genomic features and of its statistical significance. The method is based
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Fig. 2: Distributions of correlation coefficients that are obtained in histone mark
consistency test. Red — background distribution; Blue — observed distribution.
A: distribution for the ’active’ marks (H3K9ac,H3K4me1); B: Extreme case cor-
relation distribution for ’active’ marks (H3K9ac,H3K4me3). C: Distributions for
correlation of ’active’ and ’repressive’ marks (H3K9ac,H3K9me3).

on FFT, and thus is extremely fast. Therefore, it can be run on a set of windows,
and the resulting distribution can be compared with the similar one that was
obtained for permuted windows. The relation between the two distributions can
be assessed by any statistical routine, thus providing information about the
correlation of the two features along the genome. We checked the test on a
real dataset, and found that the results that are provided by the test are in
correspondence with our knowledge about the data.
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