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Abstract. A discovery of various structures in nucleotide sequences still
challenges researchers. Here we present the structure determined by the
distribution of triplets in chromosomes, where the distribution is defined
to the nearest neighbour. We found a wonderful periodicity in triplet
distribution to be observed alongside a nucleotide sequences of genomes
of some higher mammalians (donkey, rat, chimpanzee, man). Besides, a
variety of other structure patterns differing both from a periodical, and
random ones have been detected. These patterns may not be explained
within a framework of HMM of any relevant order (from 2 to 6).
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1 Introduction

A retrieval of various patterns and, in general, an order search in completely
sequenced genomes is a great deal of up-to-date biophysics and bioinformat-
ics. The correlations observed within these latter reflect some biological features
of primary structures [1–4]. In particular, the sequence inhomogeneity mani-
festing in the difference of frequency dictionaries of non-overlapped coherent
triplets counted for three different starting positions indicates the presence of
protein coding regions in a genome; more exactly, non-coding regions are invari-
ant against the frame shift of the triplet pattern, while the coding ones lack these
invariance [6–8].

A complexity of patterns observed in a genetic sequence may vary signifi-
cantly. The complexity itself is a matter of interests of mathematicians, biolo-
gists and biophysicists [9–16]. Screening a genome with respect to a complexity
of different fragments of that latter, one my find various biologically important
peculiarities in a nucleotide sequence. Here we present a new approach to figure
out some patterns in the mutual distribution of triplets observed alongside a
sequence. Probably, they are the shortest fragments in DNA sequences to be
taken into consideration.
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This paper presents some preliminary results towards the observations on the
distribution of triplets alongside a sequence, where that former has been found
with respect to the nearest neighbour. To figure out the origin and role of the
patterns, we compared the patterns observed both for real sequence, and for three
surrogate sequences (of the same length) generated with Markov process; the
processes of the order 2, 3 and 6 have been used to generate a surrogate sequence.
All Markov processes have been generated on the basis of the relevant frequency
dictionaries (bearing the strings of the length q = 3, 4 and 7, respectively)
developed over the original nucleotide sequence under consideration.

The comparison shows significant difference between the patterns observed
over a real sequence, and surrogate ones. Surprisingly, rather simple and apparent
idea yet was not explored, and a number of various and intriguing structures have
been found.

2 Materials and Methods

Consider a coherent symbol sequence T of the length N from four-letter alphabet
ℵ = {A,C,G,T}; the length is the number of symbols. Any other symbols (if
any) occurred in a real genetic entity were omitted, and the sequence has been
concatenated.

Triplet is a continuous string of three symbols: ω = ν1ν2ν3. To observe the
distribution pattern of triplets ω1 and ω2, we have counted the following function
f〈ω1,ω2〉(r):

F〈ω1,ω2〉(r) = number n〈ω1,ω2〉, ρ (ω1, ω2) = r (1)

that is the number of copies of the couple of triplets 〈ω1, ω2〉 located at the
closest distance r from each other. It other words, for each embedment of the
triplet ω1, the nearest embedment of the triplet ω2 has been found, and the
distance between them was determined. The nearest neighbourhood means that
there is no triplet ω2 somewhere in between, for a couple under consideration.

Function (1) is not the density distribution of the couples of given triplets
over the distance r. To do that, one must normalize it to develop a distribution
function:

f〈ω1,ω2〉(r) , so that
∑

r

f〈ω1,ω2〉(r) = 1 . (2)

If two triplets are located next each other with no gap between them, then
r = 0; if a nucleotide ν is between the triplets, then r = 1, etc. If two triplets
ω1 = ν1ν2ν

∗ and ω2 = ν∗ν′2ν
′
3 are overlapping over a nucleotide ν∗, then r = −1,

etc.
An observed function (2) should be compared to a theoretical one. Yet, there

are no special issues to figure out the theoretical distribution function, but to
suppose that is must decrease. The decrease of the function is a trivial follow-
up of the finiteness of an original sequence; a shape of the function at shorter
distances is less obvious. Nevertheless, a decrease of the function is still the most
expected pattern for that latter. Indeed, longer distances between two given
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Fig. 1. Typical distribution function (2) pattern observed for AAA↔ CGA (black) and

TTG↔ CGC (red) triplet couples, at the 22nd chromosome of Pan troglodytes genome
(accession number BA000046 in EMBL–bank).

triplets are less probable, than shorter ones; this may follow from combinatorial
constraints, for example.

Counting the functions (1) and (2), one has to keep in mind the longest
possible distance to be observed between two neighbouring given triplets. These
functions are defined on the set of integers Ω = {−2,−1, 0, 1, 2, . . . , rmax}, where
rmax is the longest distance between two immediate (or closest) neighbours, for
the given couple of triplets ω1 and ω2. Practically, one has to keep within the
range of lengths defined arbitrary. Thus, we have chosen the value r∗ = 5000;
it means that any longer embedments of a given triplet couple were omitted.
Meanwhile, it does not deteriorate the results.

2.1 Data source

The nucleotide sequences have been retrieved from EMBL–bank. We selected the
sequences with the portion of any extra symbols (besides A, C, G, or T) less that
0.01. We have examined the sequences belonging to the genomes of organisms
of various taxa ranging from bacteria to man; 461 sequences have been studied,
totally.
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Typical length of mammalian genome was 4× 107 to 2× 108 nucleotides; the
shortest bacterial genome taken into analysis exceeds 106 nucleotides, to avoid
a finite sampling effects.

3 Results

We have examined the pattern of the function (2) for a number of chromosomes.
To begin with, one faces the problem of a couple choice. Indeed, there exists
64 × 64 = 4096 triplet couples, for a genetic entity. Obviously, there is no way
to show the function (2) for all the couples. Thus, one should figure out some
order on the set of couples.
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Fig. 2. Same functions as in Fig. 1 shown in smaller scale (up to r = 800; the exponen-
tial decrease of the function (2) becomes apparent). Left pattern shows the TTG↔ CGC
couple, and the right one shows AAA↔ CGA couple.

First of all, one may concentrate on the study of the behaviour of the func-
tion (2) for some specific couples. Previously, a set of 32 couples has been iden-
tified [5]. This set consists of the couples making so called complementary palin-
dromes, i. e. the couples of triplets read equally in opposite directions, with re-
spect to the Chargaff’s substitution rule. The couples CCC ↔ GGG, ATC ↔ GAT,
TAA ↔ TTA, AAG ↔ CTT, ATG ↔ CAT, CAA ↔ TTG, GCA ↔ TGC, etc. are the
examples of such palindromes. Such palindromic triplets are known for (rather
good) proximity of the frequency of each one in a couple; in other words,

fTAA ≈ fTTA, fAAG ≈ fCTT, fATG ≈ fCAT, fACG ≈ fCGT ,

and so on. Thus, one may expect to face the pattern of the distribution func-
tion (2) to be quite smooth and regular. Further, we shall see that some palin-
dromes exhibit extremely complex and unusual behaviour of the function (2).

A nucleotide sequence yields 4096 couples of triplets, as the function (2); such
abundance makes a problem of the analysis and visualization of the distributions.
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Fig. 3. Distribution function (2) pattern observed for CCC↔ GGG couple of triplets.
The charts are shown for the same P.troglodytes chromosome and three surrogate
sequences generated with Markov random process of order 2, 3 and 6. The process
order l is shown in legend.

It is very natural that the function (2) decreases, as r grows up. Thus, one may
classify the couples on the basis of the decay character. Apparently, the function
yields an exponential decay:

f〈ω1,ω2〉(r) ∼ A · exp {−λ · r} , (3)

where the factor λ might be specific for some couples (within the given species,
of course).

Consider now Fig. 3 showing the head of the distribution functions (2) for
the palindromic couple CCC ↔ GGG observed in the same genetic entity. The
distribution for this couple exhibits strong and evident periodicity, with approx-
imate period in 13 nucleotides. There are some other couples exhibiting similar
behaviour of the distribution function (2). It should be said that there is no regu-
larity in the patterns observed for the same couple of triplets, for various species,
even for significantly close organisms (say, some bacterial or yeast strains).

In general, the complexity of the patter of the distribution function (2)
increases with the clade level of a genome bearer. Simply speaking, bacterial
genomes exhibit very smooth (quite often a single exponent trended) decrease of
the distribution function (2). Quite similar picture is observed for yeast genomes,
and some other fungi and protozoan genomes. Vertebrate organisms have usually
more complicated pattern of the distribution function.
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We have plotted the distribution function (2) determined for each couple of
triplets within a given sequence with exponential decay function (3), through
least square techniques. Parameters λ and exponent factor A were chosen to fit
the function (2) best of all. Rather poor fitness was observed, resulted from two
issued: the former is a structuredness observed for 0 ≤ r ≤ 100, for many couples
and sequences, and the latter is a very low (in comparison to the exponential
pattern) decay of the distribution function (2) observed for long distances (for
r ≤ 5000). To kill the effects of a serious inhomogeneity observed for 0 ≤ r ≤ 100,
and the slow decay of the tail of the distribution function (2), three versions of
the least square fitting have been implemented:
1) the distribution function (2) was used “as is”;
2) a truncated distribution function (2) was used: we fitted the exponent for

100 ≤ r ≤ rmax, and
3) a “shifted” distribution function (2) was used: each value of the function (1)

has been added with one, before the implementation of the function (2).
Thus, three couples of the parameters A and λ were derived for each couple, for
a given sequence.

A comprehensive and consequent study of the distribution of the couples over
the λ value has been carried out, also. This distribution of exponent decay factors
observed within the same DNA sequence was always found to be a bell-shaped;
here we mean the distribution over the set of 4096 couples. Obviously, this is not
the normal distribution, since it is determined for positive r, only. We did not
studied the distribution pattern of the couples of the exponent decay factor λ in
detail, while it seems to be rather stable, in shape. The stability of the shape is
accompanied with serious instability in the ordering of specific couples, in this
distribution: the couples with the greatest λ values are not numerous, for all
the analyzed sequences, while they seem to be species specific. The taxonomy
specificity becomes stronger, if a two-dimensional distribution is studied, in R2 =
{A} × {λ} space.

4 Discussion

Fig. 1 shows the distribution of the distances to the nearest neighbour observed
for two triplet couples: AAA ↔ CGA (black) and TTG ↔ CGC (red) triplet cou-
ples, at the 22nd chromosome of Pan troglodytes genome. Horizontal axis rep-
resents the distance r, while the vertical one represents the frequency of the
nearest embedment found at this distance. Obviously, the peaks observed at
r = 101 and r = 109 (see red line), and at r = 14 and r = 39 (see black line)
proves the occurrence of a structure of a kind of a conspired periodicity, or a
regularity of this type.

Fig. 2 shows the distribution function (2) for the same triplets, while observed
for a wider range of the distances between the couples taken into consideration.
Here the exponential pattern of the decrease is evident, unlike in Fig. 1. We
have examined more than four hundred sequences of various taxa ranging from
bacteria to higher primates. Such exponential decrease is absolutely universal,
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for the studied sequences. Obviously, it results from a finiteness of a sequence,
as well as from rather complex structure of these latter.

The exponential decrease of the function (2) forces a researcher to extract
this trend from the distribution function, thus purifying the periodical, or quasi-
periodical patterns in the genomes. Yet, this idea is quite hard for implementa-
tion. The point is that the trend actually is not exponential; at least, it is not
purely exponential. First, some strings of the length q = 4 and q = 5 that could
be combined from two (overlapping) triplets are extremely overrepresented, in
comparison to the hexamers obtained due to concatenation of these two triplets;
the difference in the frequency of the strings of the length q = 4 and q = 5 can
exceed the frequency of the relevant hexamer more than 3× 103 times.

Second, any frequency dictionary of the thickness q (i. e. bearing the strings of
the length q) unambiguously generates the relevant Markov process, of the order
q − 1. We have generated the Markov process transition matrices, for a number
of DNA sequences, and calculated the distribution function (2) theoretically.
Indeed, changing the elements in the matrix that transfer into the given triplet
ω2 for zero and raising such truncated matrix to the lth power (l = 2, 3, 4, . . . ),
we calculated the distribution function. Surprisingly, the calculated function
being plotted in the logarithmic coordinates, exhibited a broken line (of two
segments) thus proving the non-uniform pattern of the decrease shape. Whether
the theoretically determined distribution function (2) is a superposition of two
exponents with different decay factors, or not should be studied separately. Less
is evident for the real distribution functions (2) observed for real DNA sequences.

Third, the tail of the dis-
tribution function (2) observed
over real DNA sequences dif-
fers drastically from the the-
oretical estimations. Indeed, a
development of the function (2)
due to the power calculation
of the truncated transition ma-
trix yields positive figures of
the probability to meet a couple
at the distance l is positive, but
p≥100 ∼ 10−8, while the real
figures for the functions (2) are
much greater: f≥100 ∼ A ·10−4,
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Fig. 4: Asymmetry in the triplet distribution (the
same DNA sequence)

where 1 < A < 10. It means that real distribution functions (2) is definitely very
far from any Markov approximation; here some further studies resembling the
Boltzmann equation theory must be implemented.

All these three points deteriorate the proper estimation of an exponential
trend decrease, through the least square technique, as well as some other tech-
niques of the approximation.

Let now list the basic properties of the observed patterns in the distribution
of triplets alongside a nucleotide sequence:
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Fig. 5. The set of distribution functions (2) determined closest environment of the
given triplet (see text for details).

1) the distribution of triplets alongside a genome reveals a new structure with
yet unknown function or meaning;

2) this structure is extremely flexible: same triplets couples exhibit drastically
different behaviour for different genomes;

3) the distribution exhibits a hidden periodicity;
4) the long-scale structure (tail of the distribution function) differs drastically

from any Markovian approximation;
5) the distribution function is asymmetric one (see Fig. 4). This asymmetry

means that distribution of a given couple, and the inverted couple differ.

Very few is known towards the origin and sense of the structure described
above. The data and results shown above prove unambiguously that that is
not a Markov property standing behind the patters, in real sequences. Another
hypothesis is the long repeats. This hypothesis is disproved with a simple ob-
servation (see Fig. 5); we determined the charts of the distribution function (2)
for six related couples: considering the couple TAG ↔ TCG as the reference one,
we traced the similar functions for the couples TAG ↔ ACG and TAG ↔ AAG
that are the triplets overlapping over two and one nucleotide, respectively. Sim-
ilarly, the distribution functions were determined for the couples ATA ↔ TCG,
ACG ↔ TTT and ACG ↔ CGT. A long-repeat theory of the origin of the struc-
ture described above must follow in the very high proximity of all these charts,
while they are not. Moreover, it is clearly seen that the overall abundance of the
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couples shown in Fig. 5 differs so much, that no way for a long-repeat mechanism
may be found.

Let’s outline in brief some further activities to be carried out to clarify the
sense and function of the structure present here. First, a detailed study of the
exponential trend should be carried out, whatever one understands for that
former, under the constraints discussed above. A distribution of the couples over
the exponent decay factor values may bring a lot for understanding the fine
mechanisms of the structure.

Second, a Fourier transformation analysis should be implemented, to figure
out the periodicity and other structural elements in the patterns of triplet dis-
tributions. Third, a relation between the patterns and taxonomy of the genome
bearers should also be studied, in more detail.
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