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Abstract. The aim of the study was to develop a data analysis strategy capable 

of discovering the genetic background of radiosensitivity. Radiosensitivity is 

the relative predisposition of cells, tissues, organs or organisms to the harmful 

effect of radiation.  Effects of radiation include the mutation of DNA . Identifi-

cation of polymorphisms and genes responsible for an organism’s radiosensitiv-

ity increases the knowledge about the cell cycle and the mechanism of radio-

sensitivity, possibly providing the researchers with a better understanding of the 

process of carcinogenesis. To obtain this information, mathematical modelling 

and data mining methods were used. 

 

1 Introduction 

It appears that there are variations in individual responses to radiations, and one of the 

main issues for future research in radiation protection is the identification of those 

most at risk in terms of radiation-induced cancer.  As with sensitivity to sunlight or to 

chemotherapeutic drugs, sensitivity to ionising radiation shows variation between 

individuals. The quantification of the cancer risk associated with ionising radiation 

requires the mapping and the identification of the genes that affect risk. This will 

eventually lead to the prediction of individual sensitivity and the evaluation of the risk 

to individuals. Although a large amount of data has already been obtained, the identi-

fication of genes potentially involved in radiosensitivity for the prediction of individ-

ual cancer risk is not completed yet and further analysis is required.  
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2 Materials and methods 

2.1 Materials  

The data for radiosensitivity evaluation were the results of the G2 chromosomal ra-

diosensitivity assay (G2CR). In the pilot study, the test was performed on 14 inbred 

mice strains presented in Table 1. From each mouse, splenocytes (irradiated with a 

dose of 0.5Gy in the G2 cell cycle phase) were isolated. In next step, the measure-

ments (numbers of DNA breaks and gaps per 100 cells) were performed 1, 2, 3, 4 and 

5 hours after irradiation.  

Table 1.  Table of mice strains tested in G2CR assay 

No. Mouse Strain No. Mouse Strain 

1 A/J 8 C57Bl/6J 

2 AKR/J 9 DBA/2J 

3 Balb/cAn 10 LP 

4 Balb/cByJ 11 NOD/NH 

5 C3H/HeHsd 12 NOD/LtJ 

6 CBA/Ca 13 NZB/B1NJ 

7 CBA/H 14 SJL/J 

 

The second group of data comes from widely available sources of genotyped SNPs 

for mice. In this study of inter-mouse genetic variation the CGD SNP [1] database 

was used as the resource. The database contains 7.85 million SNPs genotyped for 74 

mice strains. The detailed information on data available for the mouse strains under 

investigation presents Table 2. 

Table 2.   Number of SNPs (loci) genotyped for all analysed mouse strains.  

Chromosome No. of SNPs Chromosome No. of SNPs 

1 694 366 11 258 748 

2 520 483 12 395 053 

3 507 286 13 397 581 

4 476 118 14 345 482 

5 494 216 15 337 079 

6 508 735 16 304 953 

7 405 410 17 265 557 

8 444 234 18 289 416 

9 361 325 19 221 786 

10 398 909 X 222 912 
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2.2 Mathematical modelling and Gaussian mixture model 

The kinetics of the chromosomal aberrations’ repair was modelled as an exponential 

function in time (Eq.1), with two parameters k (gain, responsible for the level of 

chromosomal aberration) and T (time constant, related to the speed of the DNA repair 

process) estimated with the use of the least squares method.  

            
 

       
                  

  (1) 

The distributions of individual values of each of these two parameters, together with 

AUC (area under the curve) were subjected to Gaussian Mixture Model (GMM) de-

composition [2]. It allows for identification of mice subpopulations characterized by 

different kinetics of DNA repair. Another option could be any standard clustering 

technique, like k-means method, allowing for parameter grouping. However, in con-

trast to k-means, GMM has the ability to create soft boundaries between clusters - a 

point in space can belong to any class with a certain probability. Mixture model is 

used when the data follow a distribution being a mixture of basic distributions (for 

example Gaussian distributions) - which makes the probability density function a 

convex combination of the various probability functions. The optimal numbers of 

Gaussian components were chosen with the use of Bayesian Information Criterion 

(BIC).  

2.3 SNP selection 

In the presented study, we are looking for genetic signature differentiating the radia-

tion response in subpopulations of mice (detected by the methodology presented in 

section 2.2). This statement led us to the following selection process of SNPs: if the 

genotyping of a given SNP for all mice strains assigned to the radiosensitivity sub-

population is be the same and simultaneously is different but identical among strains 

classified as normal, the SNP is deemed relevant. To better understand this process, 

Table 3 presents examples of relevant SNPs. 

Table 3. Examples of relevant SNPs selected for the further analysis, where: "R.S mice" 

represent radiosensitive strains;"A", "G", "T" represent genotype of SNP. 

SNP ID 
R.S.  

mice 

Normal  

mice 

Normal  

mice 

Normal  

mice 

Normal  

mice 

R.S.  

mice 

Normal  

mice 

R.S.  

mice 

SNP1 A G G G G A G A 

SNP2 G T T T T G T G 

2.4 The distribution of relevant SNPs along the chromosomes 

To verify the hypothesis on differences in frequency of polymorphic loci be-

tween mouse strains showing high and low induction of chromosome aberrations after 

irradiation, Fisher’s exact test was performed per each loci along every chromosome. 
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Next step involves r-scan test, which allows for testing the null hypothesis that the 

locations of chosen loci are iid (independent and identically distributed) uniformly 

distributed random variables with range [0, L]. The alternative hypothesis states that 

points occur in an overly dispersed fashion [3, 4].  

2.5 Analysis of nonsynonymous SNPs 

The selection process led to the identification of relevant SNPs, the most interesting 

of those being nonsynonymous SNPs (nsSNP). Polymorphisms of this type result in 

an amino acid change. If the nucleobase change does not lead to a change of the 

amino acid in the protein sequence, the polymorphism is called synonymous.  

To assess the impact of nsSNP to the organism, widely available algorithms were 

used: PHANTER [5], PhD-SNP [6], SNAP [7], SIFT [8] and PolyPhen-2 [9]. Each of 

them predict, with some probability, if the amino acid change could cause a deleteri-

ous effect. Most of the algorithms use the information about protein sequence conser-

vation. Some of them (e.g. PolyPhen-2) are using additional information about anno-

tation and protein structure. Additionally, when nsSNPs were substitution of amino 

acids involved in the process of phosphorylation (changing Serine, Threonine or Ty-

rosine), it is possible to assess the group of protein kinases (PK) that could be blocked 

in this position. For this problem the algorithm GSP 2.1[10] was used. 

2.6 In silico prediction for other radiosensitive strains of mice. 

The data used in the performed analysis were based on chosen mouse strains with 

measured radiosensitivity. However, the CGD database contains information for 74 

strains. For the remaining strains of mice, the estimation of other radiosensitive 

strains of mice was performed. To carry out calculations, only the relevant SNPs were 

taken. A reference group of mice was taken from the radiosensitive group. Then the 

similarity of genotypes between the group of radiosensitive mice and each of the re-

maining mouse strain were evaluated. Similarity was understood as the percentage of 

identically genotyped relevant SNPs along the genome. The most similar to the radio-

sensitive mice mouse strains were defined as the mild outliers in the similarity meas-

ure distribution, to detect them the method proposed by Hubert and Vandervieren [11] 

was used. 

3 Results 

According to the methodology presented in section 2.2, the set of individual kinetics 

models was obtained, and the distributions of gain parameter (k), time constant (T) 

and area-under-curve (AUC) values were decomposed into GMMs. Final model con-

sisted of two components for k and AUC, and one component for T parameter. The 

decomposition of the k and AUC parameters allowed for identification of threshold 

value and the detection of two subpopulations of mice (Fig. 1) - one of them repre-
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sents increased radiosensitivity, the second one represents normal response. Figure 2 

shows the kinetic of DNA repair on mice with GMM-distinguished subpopulations.  

a) b)  

Fig. 1. The GMM decomposition of kinetic model parameters. a) The decomposition of the k 

parameter. b) the decomposition of the AUC parameter. 

 

Fig. 2. Kinetics of DNA repair for mice tested in G2CR Grey lines represent strains of mice 

detected as radiosensitive. Black, dash lines represent strains of mice with normal DNA repair.  

The following mice strains were classified into the group of radiosensitive:  

BALB/cAn, BALB/cByJ and NON/LtJ. Similar classification results were obtained 

by applying the outlier detection technique proposed by Hubert and Vandervieren 

[11] directly to the distribution of the analyzed parameters. With knowledge about 
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mice subpopulations, the SNP selection process was performed following algorithm 

described in section 2.3. Since the average overall rare allele frequency is equal to 

9.62% (Table 4), the probability of observing such structure for single SNP is equal 

to: p = 0.0962
3 
(1-0.0962)

11 
= 0.0029263. 

Taking under consideration multiple testing performed for all available loci, the ex-

pected number of false discoveries equals to 2297. While applying the proposed 

methodology to our data we get 1856 relevant SNPs. Table 5 presents the distribution 

of the relevant SNPs across the genome. Detailed inspection of distribution of the 

relevant SNPs along the chromosomes shows that there are some chromosomes with 

significantly higher number of relevant SNPs and other chromosomes with signifi-

cantly lower number of that type of loci. It suggests that there are chromosomes with 

clumped distribution of relevant polymorphic loci. To check on this, the r-scan test 

was applied to verify the hypothesis on uniformity of location [3]. Applying r-Scan 

Umax test (r=1) to relevant SNPs distribution along chromosomes gives p-values much 

less than 1e-12 and allows for rejection of null hypotheses that relevant SNPs are not 

clumped. Figure 3 present graphical illustration of Relevant SNPs distribution. The 

same analysis might be done with the use of ChromoScan software [4]. 

Table 4. Estimation of variant (rare) allele frequency, pSNPs stands for polymorphic loci.  

Chr 
No of 
SNPs 

pSNPs 
Overall 

variant 
freq 

Chr 
No of 
SNPs 

pSNPs 
Overall 

variant 
freq N 

variant 

freq 
N 

variant 

freq 

1 694366 341063 22.62% 11.11% 11 258748 146431 21.39% 12.11% 

2 520483 262264 19.99% 10.07% 12 395053 198106 20.62% 10.34% 

3 507286 229264 23.42% 10.59% 13 397581 181873 20.01% 9.16% 

4 476118 219418 21.97% 10.13% 14 345482 213003 20.98% 12.94% 

5 494216 211104 21.05% 8.99% 15 337079 150984 20.91% 9.37% 

6 508735 232322 20.74% 9.47% 16 304953 114988 19.99% 7.54% 

7 405410 207630 19.50% 9.99% 17 265557 135794 21.48% 10.98% 

8 444234 218490 18.36% 9.03% 18 289416 119201 21.14% 8.71% 

9 361325 183990 17.64% 8.98% 19 221786 94203 20.53% 8.72% 

10 398909 125856 20.10% 6.34% X 222912 44286 24.91% 4.95% 
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Fig. 3. The clumping of relevant SNPs along the chromosomes. 

Table 5. Distribution of relevant SNPs along the chromosomes. #exp – expected number of 

relevant SNPs; #obs – number of observed relevant SNPs; p-value – Fisher exact test for 

overrepresentation of the relevant SNPs (    - light greay) or underrepresentation of the relevant 

SNPs (    -dark greay).  

Chr 
No of 

SNPs 

Variant 

freq [%] 
# exp # obs p-value Chr 

No of 

SNPs 

Variant 

freq [%] 
# exp # obs p-value 

1 694366 11.11 260 332  0.0017 11 258748 12.11% 111 19  <1e-6 

2 520483 10.07 165 0  <1e-6 12 395053 10.34% 131 113  ns 

3 507286 10.59 175 6  <1e-6 13 397581 9.16% 106 89  ns 

4 476118 10.13 152 0  <1e-6 14 345482 12.94% 163 0  <1e-6 

5 494216 8.99 127 106  ns 15 337079 9.37% 93 65  0.0157 

6 508735 9.47 144 12  <1e-6 16 304953 7.54% 55 2  <1e-6 

7 405410 9.99 126 74  0.0001 17 265557 10.98% 98 16  <1e-6 

8 444234 9.03 115 281  <1e-6 18 289416 8.71% 70 0  <1e-6 

9 361325 8.98 92 0  <1e-6 19 221786 8.72% 54 17  6.3e-6 

10 398909 6.34 49 724  <1e-6 X 222912 4.95% 15 0  3.1e-5 

 

In total 1856 relevant SNPs were detected, nonuniformly distributed along the chro-

mosomes. The detailed analysis of these SNPs revealed that 47 of 1856 are located in 

exons, 882 in introns, 13 in UTR regions, and 914 in intergenic regions. Eight SNPs 

appeared to be nonsynonymous (nsSNP). It was shown that relevant SNPs concen-

trate in 29 clusters located in 28 genes. Eight nsSNPs occurred only in 4 genes. Using 

widely available algorithms to predict an effect of nsSNP on protein function, it was 

possible to check the influence of the obtained nsSNPs. Additionally nsSNPs with 

substitution of amino acids involved in the process of phosphorylation were checked 

with the GPS 2.1 algorithm in order to predict their effect on protein kinases (PK). 

Two nsSNPs present increased probability of having a deleterious effect and one of 
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them could disorder phosphorylation with 14 PKs. Genes with large numbers of SNPs 

or nsSNPs had their gene ontology and signalling pathway participation analyzed.  

4 Conclusion 

The proposed strategy for data analysis, which is a combination of mathematical 

modelling and data mining techniques, allowed for the discovery of the candidate 

genetic signature of radiosensitivity. From the group of differentiating genes, two of 

them are, according to the literature study, highly significant for the analyzed phe-

nomena of radiosensitivity. One might be responsible for the process of DNA damage 

repair. The second is indirectly responsible for cell adhesion and it was observed to be 

up regulated in breast cancer patients that are one of the groups more frequently ex-

posed for the radiation does. The biological and functional validation of the obtained 

relevant SNPs is necessary and will be performed very soon.  
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