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Context

Limits of batch clustering algorithms

o Generate the best predictor by learning on the all training
data at once.

« Need the complete input data being loaded into memory
« The requirements of memory space will become high.
» Need to regenerate their clusters from scratch.

o Complex and slow analysis.
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Context

Incremental clustering

v~ Handle a bulk of updates owing to the training samples which
become available one after another over time.

v~ Mixed data is processed sequentially over flexible time
windows.
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K-prototypes

v Provides a novel definition of distance (dissimilarity measure)
between a data point and a cluster center

d(z; - ¢j) = \/ Tir — Cjr)2 + Z §(it, cjt), 2)

e The first termis the e The second term is
squared Euclidean the simple matching
distance measure on the dissimilarity measure
numeric attributes. on the categorical

attributes.
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K-prototypes

¢ Retrains from the scratch once new data stream emerges.
o Stores and processes all the input data in the memory.

~ High requirements of memory space!
» Deals only with object learning in batch.

¢ Inability to handle incremental attribute learning task.
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Gradually trains input
attributes one by one.

—l

fIncremen'l'al

Avoid retraining from
the scratch once new
attributes emerge with
newly joined samples.

Attribute

Feasible machine learning \_ Lear"mg
strategy for solving high-
dimensional pattern

classification problems.

The most tough and
crucial machine
learning tasks.




Problematic

©® Mixed medical data with new emerging attributes has not yet
been evaluated.

te Learning



Problematic

©® Mixed medical data with new emerging attributes has not yet
been evaluated.

® Mining these massive data sets faster and more accurately.




Problematic

©® Mixed medical data with new emerging attributes has not yet
been evaluated.

® Mining these massive data sets faster and more accurately.

® Making it fluently accessible for predictive analysis.

Advanced Incremental Attribute Learning Clu:



Problematic

©® Mixed medical data with new emerging attributes has not yet
been evaluated.

® Mining these massive data sets faster and more accurately.

® Making it fluently accessible for predictive analysis.

~ remains a key challenge of the health care and
medical industry!
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o Proposed towards handling mixed large scale data in the form
of continuously emerging data streams

» escorted with new added features.
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IK-prototypes

» Big data solution in medicine and healthcare fields, through
incremental attribute learning context.

o Proposed towards handling mixed large scale data in the form
of continuously emerging data streams

» escorted with new added features.

= As data stream proceeds, IK-prototypes tackles both
incremental object and attribute learning at the same deal.
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Definition of IK-prototypes

@ Manage the incremental attribute learning task in medical
healthcare field.

@ Respect better basics of clustering in terms of dispersion of
elements within and between clusters.

® Reduce time processing when assigning the incoming objects
with new attributes to their appropriate clusters.
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Definition of IK-prototypes

© K clusters with new attributes

Outputs

IK-prototypes algorithm

Input mixed data
Data streams with
additive  patient's
attributes




IK-prototypes steps

Conventional
K-prototypes method

Knowledge from

initial model

Injected
01

03

Knowledge
from data
stream model

Emerging data stream:
new instances with
additive patient’s
features

Injected

Merge
procedure

Final
knowledge

Clustering result

Input patient’s data

Figure 1. An overview of the proposed Incremental k-prototypes through
IAL context
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e Merge the knowledge coming from both models
~ each two similar clusters are combined together

~ return to the initial k
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Merge process

Similarity measure

@ Davies-Bouldin index (DB) calculates the average similarity
between clusters

« Similarity based on a comparison between the distance
between clusters and the size of the clusters themselves.

» The lower DB is, the better partition of clusters is.
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Merge process

Similarity measure

@ Davies-Bouldin index (DB) calculates the average similarity
between clusters

« Similarity based on a comparison between the distance
between clusters and the size of the clusters themselves.

» The lower DB is, the better partition of clusters is.

® Calinski-Harabasz Index (CH) is the ratio of the sum of
between-clusters dispersion and of inter-cluster dispersion for
all clusters.

« The CH score is high when clusters are dense and well
separated.
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Merge process

e Our algorithm will choose the clusters corresponding to the
highest DB value, coinciding with the lowest CH score.

c1 c2 c3 ca c5 a 2 c3 ca cs5 c6
c1 00 . - c1 10000 P P . PP
2 1431 0.0 P I 102.047 10000 P P PO
c3 0718  1.051 0.0 G a 450.566 2412 10000 Kse Hhik  whae

ca 2196 1.382 0796 0.0 LAl ca 33.759 95.732 316.75 10000 REEE KA

cs 0.938 1.178 1.187 1.144 0.0 <5 249.744 180.158 204.4 146.258 10000 ****

C6 0.689 0.953 1.597 0.776  1.464 C6 302.609 176.655 67.716 210.596 77.58 10000

Figure 3: DB index and CH score matrices for each two clusters
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e Our algorithm will choose the clusters corresponding to the
highest DB value, coinciding with the lowest CH score.

c1 c2 c3 ca c5 a 2 c3 ca cs5 c6
c1 0.0 . - c1 10000 P P . PP
2 1431 0.0 P I 102.047 10000 P P PO
c3 0718  1.051 0.0 G a 450.566 2412 10000 Kse Hhik  whae

ca 2196 1.382 0796 0.0 LAl ca 33.759 95.732 316.75 10000 REEE KA

cs 0.938 1.178 1.187 1.144 0.0 <5 249.744 180.158 204.4 146.258 10000 ****

C6 0.689 0.953 1.597 0.776  1.464 C6 302.609 176.655 67.716 210.596 77.58 10000

Figure 3: DB index and CH score matrices for each two clusters

v~ Indexes represented in bold refer to the same couple of
clusters that will be merged.




Merge process

v Indexes represented in bold refer to the same couple of
clusters that will be merged.

= The incremental attribute learning ¢s established
without retraining from the scratch.




Merge process

o The highest DB index and the lowest CH score may not be the
best choices for the merge procedure

« if they result in different combinations of clusters.
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Merge process

o The highest DB index and the lowest CH score may not be the
best choices for the merge procedure

« if they result in different combinations of clusters.

= The algorithm will carry on

@ Merge both clusters resulting from the two calculated indexes
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Merge process

o The highest DB index and the lowest CH score may not be the
best choices for the merge procedure

« if they result in different combinations of clusters.

= The algorithm will carry on
@ Merge both clusters resulting from the two calculated indexes

® Calculate the sum squared distances of objects to their
closest cluster center of the resulted merged clusters
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Merge process

o The highest DB index and the lowest CH score may not be the
best choices for the merge procedure

« if they result in different combinations of clusters.

= The algorithm will carry on
@ Merge both clusters resulting from the two calculated indexes

® Calculate the sum squared distances of objects to their
closest cluster center of the resulted merged clusters

® Maintaining the cluster with the lowest SSE.
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Experimental results







Real data sets description

Data set #Instance #Attribute Acronym
Stroke Prediction 5110 12 SP
Pharmaceutical Drug Spending 1036 7 PDS
Breast Cancer Wisconsin 569 32 BCW
Personality Scale Analysis 315 8 PSA

e Breast Cancer Wiscowin data set is derived from the UCI

machine learning repository.
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Real data sets description

Data set #Instance #Attribute Acronym
Stroke Prediction 5110 12 SP
Pharmaceutical Drug Spending 1036 7 PDS
Breast Cancer Wisconsin 569 32 BCW
Personality Scale Analysis 315 8 PSA

e Breast Cancer Wiscowin data set is derived from the UCI
machine learning repository.

e The rest of the data sets are imported from Kaggle.
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Evaluation measures

@ Sum of Squared Errors (SSE |) is the sum of squared distances
of objects to their closest cluster centres.

® Silhouette Coefficient (SC 1) is bounded between -1 for
incorrect clustering and +1 for highly dense clustering.

v~ A higher SC score relates to a model with better defined clusters.

® Run time (RT |) is the time needed to achieve the final
clustering result.
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Sum of Squared Errors results

The total SSE is

K-prototypes 1920 1956 2130 2.587
IK-prototypes 1651 1577 1547 1682
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Conclusion

v~ We gain clustering method that

o cluster new emerging attributes with newly added instances in
streaming data,

» provide a well defined model with better separation between
clusters,

© in less time consuming.

v~ The IK-prototypes outperforms the k-prototypes method
based on different evaluation criteria.

v~ Helping in early detection of diseases, treatment
recommendations, and clinical services to doctors.
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© Form an enhanced version of the IK-prototypes algorithm,
capable to deal with evolving feature and object spaces.

® Extend our method to be able to handle the decremental
attribute and object learning aspects in medicine and
healthcare fields.

® Perform a feature selection preprocessing technique before
modeling new emerging medical data streams.




Thank you.
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