IWBBIO-2022 9th International Work-Conference on Bioinformatics and Biomedical Engineering

A Deep Learning-based method for uncovering GPCR ligand-induced conformational states using interpretability techniques

Mario A. Gutiérrez-Mondragón, Caroline König, Alfredo Vellido.

Contents

Introduction

- Materials
 - Residue Interaction Networks
 - Data pre-processing
- Experimental Setup
- Results and Discussion
 - Interpretability of the results
- Conclusions

Study target: G protein-coupled receptors (GPCRs).

- Primary transmembrane receptors for signal transduction.
- These proteins act as receptors of plenty of signaling molecules (ligands) from hormones, neurotransmitters, to photons of light.
- Understanding the functional properties of these receptors is critical to deciphering the signaling process.

Schneider, J., Korshunova, K., Musiani, F., Alfonso-Prieto, M., Giorgetti, A., & Carloni, P. (2018). Predicting ligand binding poses for low-resolution membrane protein models: Perspectives from multiscale simulations. *Biochemical and biophysical research communications*, 498(2), 366-374.

Data:

Molecular Dynamic Simulations (MD).

- MD has become an established technique to explore the conformational space of proteins at an atomic level.
- MD simulations provided missing information on the dynamics of the receptors.
- The investigation of the structural information of the receptor has relevant implications in pharmacoproteomic.

Tool to perform analysis: Deep Learning (DL)– based Models

- DL are suitable tools for knowledge discovery.
- DL models have proven to be relevant tools to alleviate and complement the challenges faced by Bioinformatics.
- However, the interpretability of the results has been poorly investigated.

Methodology:

- Data Gathering GPCR **β2-adrenergic(β2AR)** receptor with full agonist, inverse agonist and ligand-free structure.
- Data Transformation to Residue Interaction Networks.
- Model proposed: Convolution Neural Network on a Supervised classification problem on agonist-specific responses.
- Motif (residues or groups of residues) identification that induce liganddependent conformations trough interpretability algorithms. In particular, Layer-Wise Propagation Relevance algorithm.

2. Approach

GPCR-B2-Adrenergic Receptor cloud-based MD simulations on Google Exacycle.

Structure	Description	Туре	Simulations	Length
β2ar2RH1-a		apo (no ligand)		
β2ar2RH1-b		full agonist (BI-167107)	Study C	Case
β2ar2RH1-c	β2ar2-inactive	partial inverse agonist (carazolol)		
β2ar2RH1-icl3		Icl3 modeled – apo (no ligand)	,	
`β2ar3pg0-a		apo (no ligand)	10,000	~12.5 ns
β2ar3pg0-b	B2ar2-active	full agonist (BI-167107)		
β2ar3pg0-c		Icl3 modeled – apo (no ligand) apo (no ligand) full agonist (BI-167107) partial inverse agonist (carazolol) apo (no ligand)		
a2a3eml	Plarl active	apo (no ligand)		
B1ar2y02	bzurz-uclive	apo (no ligand)		

Kohlhoff, K. J., Shukla, D., Lawrenz, M., Bowman, G. R., Konerding, D. E., Belov, D., Altman, R.B., Pande, V. S.: Cloudbased simulations on Google Exacycle reveal ligand modulation of GPCR activation pathways. Nature chemistry, 6(1), 15-21 (2014).

Brinda, K., Vishveshwara, S.: A network representation of protein structures: implications for protein stability. Biophysical journal 89(6), 4159–4170 (2005)

- Network representation of the protein structure to facilitate the study and analysis.
- It represent the three dimensional structure into a two-dimensional space.
- Each amino acid (residue) refers to a node, and the strength of the noncovalent interactions between two amino acids is evaluated for edge determination.

• The interaction strength is evaluated as a percentage:

- n_{ij} refers to the number of distinct atom pairs between the side chains of the residues *i* and *j*, which come within a cutoff distance (4.5 Å as a default).
- Ni and Nj represent normalization factors.

teraction network \mathbb{O} oresen Resid $\overline{\mathbb{O}}$

- Data Splits.

Experimental Setup

class	description	# Training sample	es # Test sa	mples
2RH1-b	β2AR- full agonist	8,089	5,393	
2RH1-c	β2AR- inverse agonist	7,711	5,141	
2RH1-icl3	apo (no ligand)	7,659	5,106	
	Total:	23,4	59	15,640

- Model Architecture Proposed.

- Cross K-Fold Validation Training

- Learning Curves

5.1 Interpretability of the Results

- Relevance Per Transmembrane.

a) Transmembrane AVG Relevance β2ar2 with full agonist.		b) Transmembrane AVG Relevance β2ar2 with inverse agonist.			c) Transmembrane AVG Relevanc β2ar2 free ligand.			
region	# RI	AVG R	region	# RI	AVG R	region	# RI	AVG R
TM1	178	0.002775	TM1	183	0.006238	TM1	214	0.005606
TM2	219	0.003977	TM2	239	0.007591	TM2	179	0.002913
тмз	236	0.003365	TM3	260	0.013146	ТМЗ	251	0.002294
TM4	126	0.005040	TM4	116	0.018101	TM4	164	0.002551
TM5	211	0.004188	TM5	219	0.011499	TM5	445	0.003197
TM6	269	0.005906	TM6	291	0.011066	TM6	257	0.012646
TM7	186	0.003853	TM7	213	0.012098	TM7	66	0.002494

 The study of the conformational space of GPCRs has critical implications in Drug Discovery process.

- Molecular Dynamics and Machine Learning-based models enable a further understanding of molecular processes providing relevant insights into the dynamics of proteins.
- The proposed methodology addresses the transformation of the raw simulations into a Protein Interaction Network.
- We have presented a Convolution Neural Network with high accuracy on a classification problem to provide evidence of the ligand-specific GPCR activity.
- We also include an interpretability study of the prediction results. Therefore, we can identify relevant features (motifs) that underlie conformational rearrangements influenced by ligands.
- Importantly, we provide the trustworthiness of the proposed model and a method to further assess its predictions in this domain.

Thank You!

mario.alberto.gutierrez@upc.edu caroline.leonore.konig@upc.edu avellido@cs.upc.edu