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• Primary transmembrane receptors for

signal transduction.

• These proteins act as receptors of plenty of

signaling molecules (ligands) - from

hormones, neurotransmitters, to photons of

light.

• Understanding the functional properties of

these receptors is critical to deciphering

the signaling process.

• MD has become an established technique

to explore the conformational space of

proteins at an atomic level.

• MD simulations provided missing

information on the dynamics of the

receptors.

• The investigation of the structural

information of the receptor has relevant

implications in pharmacoproteomic.

• DL are suitable tools for knowledge

discovery.

• DL models have proven to be relevant

tools to alleviate and complement the

challenges faced by Bioinformatics.

• However, the interpretability of the results

has been poorly investigated.

Study target:
G protein-coupled receptors (GPCRs).

Data:
Molecular Dynamic Simulations (MD).

Tool to perform analysis:
Deep Learning (DL)– based Models
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Schneider, J., Korshunova, K., Musiani, F., Alfonso-Prieto,

M., Giorgetti, A., & Carloni, P. (2018). Predicting ligand

binding poses for low-resolution membrane protein

models: Perspectives from multiscale simulations.

Biochemical and biophysical research

communications, 498(2), 366-374.



• Data Gathering - GPCR β2-adrenergic(β2AR) receptor with full agonist,
inverse agonist and ligand-free structure.

• Data Transformation to Residue Interaction Networks.

• Model proposed: Convolution Neural Network on a Supervised classification
problem on agonist-specific responses.

• Motif (residues or groups of residues) identification that induce ligand-
dependent conformations trough interpretability algorithms. In particular,
Layer-Wise Propagation Relevance algorithm.
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Methodology:



GPCR-β2-Adrenergic Receptor cloud-based MD simulations on Google Exacycle.

Structure Description Type Simulations Length

β2ar2RH1-a

β2ar2-inactive

apo (no ligand)

10,000 ~12.5 ns

β2ar2RH1-b full agonist
(BI-167107)

β2ar2RH1-c partial inverse
agonist (carazolol)

β2ar2RH1-icl3 Icl3 modeled
– apo (no ligand)

β2ar3pg0-a

Β2ar2-active

apo (no ligand)

β2ar3pg0-b full agonist
(BI-167107)

β2ar3pg0-c partial inverse
agonist (carazolol)

a2a3eml
Β2ar2-active

apo (no ligand)

Β1ar2y02 apo (no ligand)

Kohlhoff, K. J., Shukla, D., Lawrenz, M., Bowman, G. R.,

Konerding, D. E., Belov, D., Altman, R.B., Pande, V. S.: Cloud-

based simulations on Google Exacycle reveal ligand

modulation of GPCR activation pathways. Nature chemistry,

6(1), 15-21 (2014).

3
. 

M
a

te
ri
a

ls

Study Case



|
• The interaction strength is evaluated as a percentage:

𝑰𝒊𝒋 =
𝒏𝒊𝒋

𝑵𝒊𝒋

× 𝟏𝟎𝟎 → 𝒆𝒅𝒈𝒆 𝒊𝒇 𝒊 ≠ 𝒋 𝒂𝒏𝒅 𝑰𝒊𝒋 > 𝑰𝒎𝒊𝒏
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• Network representation of the

protein structure to facilitate the

study and analysis.

• It represent the three dimensional

structure into a two-dimensional

space.

• Each amino acid (residue) refers to a

node, and the strength of the

noncovalent interactions between

two amino acids is evaluated for

edge determination.

– nij refers to the number of distinct atom pairs

between the side chains of the residues i and j, which

come within a cutoff distance (4.5 Å as a default).

– Ni and Nj represent normalization factors.
• Computations were made using PSN module from 

Wordom Software.

Brinda, K., Vishveshwara, S.: A network

representation of protein structures:

implications for protein stability.

Biophysical journal 89(6), 4159–4170 (2005)
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2RH1-b β2AR- full agonist 8,089 5,393

2RH1-c β2AR- inverse agonist 7,711 5,141

2RH1-icl3 apo (no ligand) 7,659 5,106

Total: 23,459 15,640

Layer(type) Output Shape # Parameters

Conv2d-1 [-1, 32, 310, 310] 832

ReLu-2 [-1, 32, 310, 310] 0

MaxPool2d-3 [-1, 32, 155, 155] 0

Conv2d-4 [-1, 32, 151, 151] 25,632

ReLu-5 [-1, 32, 150, 150] 0

MaxPool2d-6 [-1, 32, 75, 75] 0

Flatten-7 [-1, 18,000] 0

Linear-8 [-1, 32] 5, 760, 032

ReLu-9 [-1, 32] 0

Dropout-10 [-1, 32] 0

Linear-11 [-1, 3] 99

Total params: 5, 768, 595

Trainable params: 5, 786, 59

- Data Splits.

- Model Architecture Proposed.

• Overview on Convolution Neural Networks.

*Algorithms and computations were developed using PyTorch and Python.
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# fold AVG 
Training 
Loss

AVG 
Validation 
Loss

AVG 
Training 
Accuracy 

AVG 
Validation 
Accuracy

1 53.5658 8.3702 0.9152 0.9541

2 20.1192 1.9798 0.9709 0.9897

3 14.3261 1.4840 0.9797 0.9925

4 11.4291 1.0138 0.9832 0.9948

5 9.8927 1.4139 0.9854 0.9984

Fold AVG: 21.8665 2.8523 0.9668 0.9859

- Cross K-Fold Validation Training - Learning Curves

Fold 1

Fold 2

Fold 3

Fold 4

Fold 5

Training Sets Validation Sets

error = 
1
5
σ
i=1
5 errori

error1

error2

error3

error4

error5



5
.1

 I
n

te
rp

re
ta

b
ili

ty
 o

f 
th

e
 R

e
su

lt
s

- Layer-Wise Relevance Propagation

- Motifs Identification

a) AVG Relevance β2ar2 with full agonist.

b) AVG Relevance β2ar2 with inverse agonist.

c) AVG Relevance β2ar2 free ligand.

Montavon, G., Binder, A., Lapuschkin, S.,

Samek, W., & Müller, K. R. (2019). Layer-wise

relevance propagation: an overview.

Explainable AI: interpreting, explaining and

visualizing deep learning, 193-209.

http://www.heatmapping.org/



- Relevance Per Transmembrane.

a)  Transmembrane AVG 

Relevance β2ar2 with full agonist.

region # RI AVG R

TM1 178 0.002775

TM2 219 0.003977

TM3 236 0.003365

TM4 126 0.005040

TM5 211 0.004188

TM6 269 0.005906

TM7 186 0.003853

region # RI AVG R

TM1 183 0.006238

TM2 239 0.007591

TM3 260 0.013146

TM4 116 0.018101

TM5 219 0.011499

TM6 291 0.011066

TM7 213 0.012098

b)  Transmembrane AVG Relevance 

β2ar2 with inverse agonist.

region # RI AVG R

TM1 214 0.005606

TM2 179 0.002913

TM3 251 0.002294

TM4 164 0.002551

TM5 445 0.003197

TM6 257 0.012646

TM7 66 0.002494

c)  Transmembrane AVG Relevance 

β2ar2 free ligand.
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▪ Molecular Dynamics and Machine Learning-based models enable a

further understanding of molecular processes providing relevant

insights into the dynamics of proteins.

▪ The proposed methodology addresses the transformation of the raw

simulations into a Protein Interaction Network.

▪ We have presented a Convolution Neural Network with high accuracy

on a classification problem to provide evidence of the ligand-specific

GPCR activity.

▪ We also include an interpretability study of the prediction results.

Therefore, we can identify relevant features (motifs) that underlie

conformational rearrangements influenced by ligands.

▪ Importantly, we provide the trustworthiness of the proposed model

and a method to further assess its predictions in this domain.

▪ The study of the conformational space of GPCRs has critical

implications in Drug Discovery process.
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Thank You!

mario.alberto.gutierrez@upc.edu
caroline.leonore.konig@upc.edu
avellido@cs.upc.edu


