
Migrating CUDA to oneAPI:
A Smith-Waterman Case Study

Manuel Costanzo
Enzo Rucci
Carlos García-Sánchez
Marcelo Naiouf
Manuel Prieto-Matías

Agenda

• Motivation and Goal
• oneAPI
• Smith-Waterman
• Experimental Work
• Experimental Results
• Conclusions

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

Agenda

• Motivation and Goal
• oneAPI
• Smith-Waterman
• Experimental Work
• Experimental Results
• Conclusions

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

Motivation
Heterogeneous computing and massively parallel
architectures have proven to be an effective strategy for
maximizing the performance and energy efficiency of
computing system.

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

Motivation
Heterogeneous computing and massively parallel
architectures have proven to be an effective strategy for
maximizing the performance and energy efficiency of
computing system.

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

Because of that, programmers typically rely on a variety
of hardware, such as CPUs, GPUs, FPGAs, and other
kinds of accelerator

Motivation
Heterogeneous computing and massively parallel
architectures have proven to be an effective strategy for
maximizing the performance and energy efficiency of
computing system.

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

Because of that, programmers typically rely on a variety
of hardware, such as CPUs, GPUs, FPGAs, and other
kinds of accelerator

CPUs

Motivation
Heterogeneous computing and massively parallel
architectures have proven to be an effective strategy for
maximizing the performance and energy efficiency of
computing system.

GPUs

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

Because of that, programmers typically rely on a variety
of hardware, such as CPUs, GPUs, FPGAs, and other
kinds of accelerator

CPUs

Motivation
Heterogeneous computing and massively parallel
architectures have proven to be an effective strategy for
maximizing the performance and energy efficiency of
computing system.

GPUs

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

Because of that, programmers typically rely on a variety
of hardware, such as CPUs, GPUs, FPGAs, and other
kinds of accelerator

FPGAs
CPUs

VPUs

Motivation
Heterogeneous computing and massively parallel
architectures have proven to be an effective strategy for
maximizing the performance and energy efficiency of
computing system.

GPUs

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

Because of that, programmers typically rely on a variety
of hardware, such as CPUs, GPUs, FPGAs, and other
kinds of accelerator

FPGAs
CPUs

Motivation - oneAPI
Intel recently introduced the oneAPI programming
ecosystem, which provides a unified programming model for
a wide range of hardware architectures.

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

Motivation - oneAPI
Intel recently introduced the oneAPI programming
ecosystem, which provides a unified programming model for
a wide range of hardware architectures.

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

Data Parallel C++ (DPC++)
• C++
• SYCL

Motivation - oneAPI
Intel recently introduced the oneAPI programming
ecosystem, which provides a unified programming model for
a wide range of hardware architectures.

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

Data Parallel C++ (DPC++)
• C++
• SYCL

 Same source code on different
architectures

Motivation - Bioinformatics

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

GPUs can be considered the dominant accelerator, while
CUDA is the most popular programming language for them
nowadays

Motivation - Bioinformatics

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

GPUs can be considered the dominant accelerator, while
CUDA is the most popular programming language for them
nowadays

Motivation - Bioinformatics

Bioinformatics and Computational Biology have been
exploiting GPUs for more than two decades.

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

GPUs can be considered the dominant accelerator, while
CUDA is the most popular programming language for them
nowadays

Motivation - Bioinformatics

Bioinformatics and Computational Biology have been
exploiting GPUs for more than two decades.

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

GPUs can be considered the dominant accelerator, while
CUDA is the most popular programming language for them
nowadays

Molecular dynamics

Motivation - Bioinformatics

Bioinformatics and Computational Biology have been
exploiting GPUs for more than two decades.

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

GPUs can be considered the dominant accelerator, while
CUDA is the most popular programming language for them
nowadays

Motivation - Bioinformatics

Bioinformatics and Computational Biology have been
exploiting GPUs for more than two decades.

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

GPUs can be considered the dominant accelerator, while
CUDA is the most popular programming language for them
nowadays

Molecular docking

Motivation - Bioinformatics

Bioinformatics and Computational Biology have been
exploiting GPUs for more than two decades.

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

GPUs can be considered the dominant accelerator, while
CUDA is the most popular programming language for them
nowadays

Motivation - Bioinformatics

Bioinformatics and Computational Biology have been
exploiting GPUs for more than two decades.

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

GPUs can be considered the dominant accelerator, while
CUDA is the most popular programming language for them
nowadays

Prediction and searching of
molecular structures

Motivation - Bioinformatics

Bioinformatics and Computational Biology have been
exploiting GPUs for more than two decades.

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

GPUs can be considered the dominant accelerator, while
CUDA is the most popular programming language for them
nowadays

Motivation - Bioinformatics

Bioinformatics and Computational Biology have been
exploiting GPUs for more than two decades.

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

GPUs can be considered the dominant accelerator, while
CUDA is the most popular programming language for them
nowadays

Sequence alignment

Motivation - Bioinformatics

Bioinformatics and Computational Biology have been
exploiting GPUs for more than two decades.

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

GPUs can be considered the dominant accelerator, while
CUDA is the most popular programming language for them
nowadays

Sequence alignment

 One of the most widely used
implementations

Motivation - Bioinformatics

Bioinformatics and Computational Biology have been
exploiting GPUs for more than two decades.

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

GPUs can be considered the dominant accelerator, while
CUDA is the most popular programming language for them
nowadays

Motivation - Bioinformatics

Bioinformatics and Computational Biology have been
exploiting GPUs for more than two decades.

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

GPUs can be considered the dominant accelerator, while
CUDA is the most popular programming language for them
nowadays Difficulty in porting the code to

other architectures.

oneAPI - DPCT

oneAPI facilitates the migration to the SYCL-based DPC++
programming language through the DPCT tool.

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

oneAPI - DPCT

oneAPI facilitates the migration to the SYCL-based DPC++
programming language through the DPCT tool.

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

oneAPI - DPCT

oneAPI facilitates the migration to the SYCL-based DPC++
programming language through the DPCT tool.

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

A few preliminary studies assessing the usefulness of dpct can be
found

oneAPI - DPCT

oneAPI facilitates the migration to the SYCL-based DPC++
programming language through the DPCT tool.

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

A few preliminary studies assessing the usefulness of dpct can be
found

Simulation

oneAPI - DPCT

oneAPI facilitates the migration to the SYCL-based DPC++
programming language through the DPCT tool.

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

A few preliminary studies assessing the usefulness of dpct can be
found

oneAPI - DPCT

oneAPI facilitates the migration to the SYCL-based DPC++
programming language through the DPCT tool.

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

A few preliminary studies assessing the usefulness of dpct can be
found

Math

oneAPI - DPCT

oneAPI facilitates the migration to the SYCL-based DPC++
programming language through the DPCT tool.

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

A few preliminary studies assessing the usefulness of dpct can be
found

oneAPI - DPCT

oneAPI facilitates the migration to the SYCL-based DPC++
programming language through the DPCT tool.

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

A few preliminary studies assessing the usefulness of dpct can be
found

Cryptography

oneAPI - DPCT

oneAPI facilitates the migration to the SYCL-based DPC++
programming language through the DPCT tool.

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

A few preliminary studies assessing the usefulness of dpct can be
found

oneAPI - DPCT

oneAPI facilitates the migration to the SYCL-based DPC++
programming language through the DPCT tool.

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

A few preliminary studies assessing the usefulness of dpct can be
found

 No study has assessed their utility in Bioinformatics

Goal

To present our experiences porting a
biological software tool to DPC++ using dpct

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

SW#db: a CUDA-based, memory efficient
implementation of the Smith-Waterman algorithm

Goal

To present our experiences porting a
biological software tool to DPC++ using dpct

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

➔ An analysis of the dpct e ectiveness for CUDA code ff
migration

➔ An analysis of the DPC++ code’s portability, considering
di erent target platforms and vendors (CPU and GPUs).ff

➔ A comparison of the performance on di erent hardware ff
architectures (CPU and GPUs).

SW#db: a CUDA-based, memory efficient
implementation of the Smith-Waterman algorithm

Agenda

• Motivation and Goal
• oneAPI
• Smith-Waterman
• Experimental Work
• Experimental Results
• Conclusions

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

Technologies - oneAPI
oneAPI is a programming ecosystem, which provides a
unified programming model for a wide range of hardware
architectures

 Migrating CUDA to oneAPI: A Smith-Waterman Case Study

Technologies - SYCL & DPC++

SYCL allows the programmer to write host code in C++ and
make it compatible to run on different architectures.

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

Technologies - SYCL & DPC++

SYCL allows the programmer to write host code in C++ and
make it compatible to run on different architectures.

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

Technologies - SYCL & DPC++

SYCL allows the programmer to write host code in C++ and
make it compatible to run on different architectures.

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

DPC++ combines the SYCL language with modified C++.

Technologies - SYCL & DPC++

SYCL allows the programmer to write host code in C++ and
make it compatible to run on different architectures.

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

DPC++ combines the SYCL language with modified C++.

Agenda

• Motivation and Goal
• oneAPI
• Smith-Waterman
• Experimental Work
• Experimental Results
• Conclusions

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

Smith-Waterman

Obtains the optimal local alignment between two biological
sequences.

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

Smith-Waterman

Obtains the optimal local alignment between two biological
sequences.

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

It has been used as the basis for many subsequent algorithms

Smith-Waterman

Obtains the optimal local alignment between two biological
sequences.

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

It has been used as the basis for many subsequent algorithms

Is often employed as a benchmark when comparing different
alignment techniques

Smith-Waterman

Obtains the optimal local alignment between two biological
sequences.

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

It has been used as the basis for many subsequent algorithms

Is often employed as a benchmark when comparing different
alignment techniques

SW# is a CUDA tool for computing biological
sequence alignments that works with both
protein and DNA sequences.

Agenda

• Motivation and Goal
• oneAPI
• Smith-Waterman
• Experimental Work
• Experimental Results
• Conclusions

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

Experimental Work
The migration process consists of 4 stages:

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

Experimental Work
The migration process consists of 4 stages:

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

1. Use the DPCT tool for generating a first version (Stage 1).

Experimental Work
The migration process consists of 4 stages:

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

1. Use the DPCT tool for generating a first version (Stage 1).

2. Based on the DPCT alerts, modify the resulting code (Stage 2).

Experimental Work
The migration process consists of 4 stages:

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

1. Use the DPCT tool for generating a first version (Stage 1).

2. Based on the DPCT alerts, modify the resulting code (Stage 2).

3. Based on runtime errors, modify the code (Stage 3).

Experimental Work
The migration process consists of 4 stages:

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

1. Use the DPCT tool for generating a first version (Stage 1).

2. Based on the DPCT alerts, modify the resulting code (Stage 2).

3. Based on runtime errors, modify the code (Stage 3).

4. Verify that the results are correct (Stage 4).

Experimental Work - Stage 1
Generate first version of DPC++ code using DPCT tool

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

Experimental Work - Stage 1
Generate first version of DPC++ code using DPCT tool

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

Experimental Work - Stage 1
Generate first version of DPC++ code using DPCT tool

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

1. intercept-build make

Experimental Work - Stage 1
Generate first version of DPC++ code using DPCT tool

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

1. intercept-build make

2. dpct -p compile_commands.json -in-root=$PROJ_DIR

Experimental Work - Stage 2

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

DPCT1003: Migrated API does not return error code. (*, 0) is inserted. You may need to rewrite this
code

DPCT1009: SYCL uses exceptions to report errors and does not use the error codes. The original code
was commented out and a warning string was inserted. You need to rewrite this code.

Experimental Work - Stage 2

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

DPCT1003: Migrated API does not return error code. (*, 0) is inserted. You may need to rewrite this
code

DPCT1009: SYCL uses exceptions to report errors and does not use the error codes. The original code
was commented out and a warning string was inserted. You need to rewrite this code.

Experimental Work - Stage 2

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

DPCT1003: Migrated API does not return error code. (*, 0) is inserted. You may need to rewrite this
code

DPCT1009: SYCL uses exceptions to report errors and does not use the error codes. The original code
was commented out and a warning string was inserted. You need to rewrite this code.

Experimental Work - Stage 2

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

DPCT1003: Migrated API does not return error code. (*, 0) is inserted. You may need to rewrite this
code

DPCT1009: SYCL uses exceptions to report errors and does not use the error codes. The original code
was commented out and a warning string was inserted. You need to rewrite this code.

Experimental Work - Stage 2

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

DPCT1003: Migrated API does not return error code. (*, 0) is inserted. You may need to rewrite this
code

DPCT1009: SYCL uses exceptions to report errors and does not use the error codes. The original code
was commented out and a warning string was inserted. You need to rewrite this code.

Experimental Work - Stage 2

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

DPCT1003: Migrated API does not return error code. (*, 0) is inserted. You may need to rewrite this
code

DPCT1009: SYCL uses exceptions to report errors and does not use the error codes. The original code
was commented out and a warning string was inserted. You need to rewrite this code.

Experimental Work - Stage 2

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

DPCT1003: Migrated API does not return error code. (*, 0) is inserted. You may need to rewrite this
code

DPCT1009: SYCL uses exceptions to report errors and does not use the error codes. The original code
was commented out and a warning string was inserted. You need to rewrite this code.

DPCT uses Unified Shared Memory (USM) model by default

Experimental Work - Stage 2

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

DPCT1003: Migrated API does not return error code. (*, 0) is inserted. You may need to rewrite this
code

DPCT1009: SYCL uses exceptions to report errors and does not use the error codes. The original code
was commented out and a warning string was inserted. You need to rewrite this code.

Experimental Work - Stage 2

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

DPCT1005: The SYCL device version is different from CUDA Compute Compatibility. You may need to
rewrite this code.

Experimental Work - Stage 2

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

DPCT1005: The SYCL device version is different from CUDA Compute Compatibility. You may need to
rewrite this code.

Experimental Work - Stage 2

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

DPCT1005: The SYCL device version is different from CUDA Compute Compatibility. You may need to
rewrite this code.

Experimental Work - Stage 2

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

DPCT1005: The SYCL device version is different from CUDA Compute Compatibility. You may need to
rewrite this code.

Experimental Work - Stage 2

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

DPCT1005: The SYCL device version is different from CUDA Compute Compatibility. You may need to
rewrite this code.

Experimental Work - Stage 2

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

DPCT1005: The SYCL device version is different from CUDA Compute Compatibility. You may need to
rewrite this code.

Experimental Work - Stage 2

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

DPCT1049: The workgroup size passed to the SYCL kernel may exceed the limit. To get the device
limit, query info::device::max_work_group_size. Adjust the workgroup size if needed.

Experimental Work - Stage 2

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

DPCT1049: The workgroup size passed to the SYCL kernel may exceed the limit. To get the device
limit, query info::device::max_work_group_size. Adjust the workgroup size if needed.

Experimental Work - Stage 2

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

DPCT1049: The workgroup size passed to the SYCL kernel may exceed the limit. To get the device
limit, query info::device::max_work_group_size. Adjust the workgroup size if needed.

Experimental Work - Stage 2

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

DPCT1049: The workgroup size passed to the SYCL kernel may exceed the limit. To get the device
limit, query info::device::max_work_group_size. Adjust the workgroup size if needed.

Experimental Work - Stage 2

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

DPCT1065: Consider replacing sycl::nd_item::barrier() with
sycl::nd_item::barrier(sycl::access::fence_space::local_space) for better performance if there is no
access to global memory.

Experimental Work - Stage 2

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

DPCT1065: Consider replacing sycl::nd_item::barrier() with
sycl::nd_item::barrier(sycl::access::fence_space::local_space) for better performance if there is no
access to global memory.

Experimental Work - Stage 2

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

DPCT1065: Consider replacing sycl::nd_item::barrier() with
sycl::nd_item::barrier(sycl::access::fence_space::local_space) for better performance if there is no
access to global memory.

Experimental Work - Stage 2

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

DPCT1065: Consider replacing sycl::nd_item::barrier() with
sycl::nd_item::barrier(sycl::access::fence_space::local_space) for better performance if there is no
access to global memory.

Experimental Work - Stage 2

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

DPCT1065: Consider replacing sycl::nd_item::barrier() with
sycl::nd_item::barrier(sycl::access::fence_space::local_space) for better performance if there is no
access to global memory.

item_ct1.barrier(sycl::access::fence_space::local_space
)

Experimental Work - Stage 2

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

DPCT1059: SYCL only supports 4-channel image format. Adjust the code.

Experimental Work - Stage 2

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

DPCT1059: SYCL only supports 4-channel image format. Adjust the code.

Experimental Work - Stage 2

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

DPCT1059: SYCL only supports 4-channel image format. Adjust the code.

Experimental Work - Stage 2

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

DPCT1059: SYCL only supports 4-channel image format. Adjust the code.

Experimental Work - Stage 2

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

DPCT1059: SYCL only supports 4-channel image format. Adjust the code.

Experimental Work - Stage 2

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

DPCT1059: SYCL only supports 4-channel image format. Adjust the code.

Experimental Work - Stage 2

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

DPCT1059: SYCL only supports 4-channel image format. Adjust the code.

Experimental Work - Stage 2

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

DPCT1059: SYCL only supports 4-channel image format. Adjust the code.

Experimental Work - Stage 2

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

DPCT1059: SYCL only supports 4-channel image format. Adjust the code.

Experimental Work - Stage 2

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

DPCT1059: SYCL only supports 4-channel image format. Adjust the code.

Experimental Work - Stage 3

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

For a 1D/2D image/image array, the width must be a Value >= 1 and <=
CL_DEVICE_IMAGE2D_MAX_WIDTH.

Experimental Work - Stage 3

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

For a 1D/2D image/image array, the width must be a Value >= 1 and <=
CL_DEVICE_IMAGE2D_MAX_WIDTH.

Experimental Work - Stage 3

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

For a 1D/2D image/image array, the width must be a Value >= 1 and <=
CL_DEVICE_IMAGE2D_MAX_WIDTH.

Experimental Work - Stage 3

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

For a 1D/2D image/image array, the width must be a Value >= 1 and <=
CL_DEVICE_IMAGE2D_MAX_WIDTH.

Experimental Work - Stage 3

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

For a 1D/2D image/image array, the width must be a Value >= 1 and <=
CL_DEVICE_IMAGE2D_MAX_WIDTH.

Experimental Work - Stage 3

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

For a 1D/2D image/image array, the width must be a Value >= 1 and <=
CL_DEVICE_IMAGE2D_MAX_WIDTH.

Experimental Work - Stage 3

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

For a 1D/2D image/image array, the width must be a Value >= 1 and <=
CL_DEVICE_IMAGE2D_MAX_WIDTH.

Experimental Work - Stage 3

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

For a 1D/2D image/image array, the width must be a Value >= 1 and <=
CL_DEVICE_IMAGE2D_MAX_WIDTH.

Experimental Work - Stage 4

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

✅ Different tests were run to prove that
the DPC++ code generates correct results

Agenda

• Motivation and Goal
• oneAPI
• Smith-Waterman
• Experimental Work
• Experimental Results
• Conclusions

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

Experimental Results - Hardware
Platforms

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

CPU GPU

ID Processor RAM
(Memory)

ID Vedor
(Type)

Model
(Architecture)

GFLOPS
peak (SP)

Core-i5 Intel Core i5-
7400

16 GB Titan NVIDIA
(Discrete)

Titan X (Pascal) 10970

Core-i3 Intel Core i3-
4160

8 GB RTX NVIDIA
(Discrete)

RTX 2070
(Turing)

7465

Core-i9 Intel Core i9-
10920X

32 GB Iris XE Intel
(Discrete)

Iris Xe MAX
Graphics (Gen

12.1)

2534

Xeon Intel Xeon E-
2176G

65 GB P630 NVIDIA
(Integrated)

UHD Graphics
P630 (Gen 9.5)

441.6

Experimental Results - Design

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

1. UniProtKB/Swiss-Prot database (release 2021_04) contains 204173280
amino acid residues in 565928 sequences with a maximum length of
35213

Experimental Results - Design

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

1. UniProtKB/Swiss-Prot database (release 2021_04) contains 204173280
amino acid residues in 565928 sequences with a maximum length of
35213

2. 20 queries with length from 144 to 5478 (accession numbers: P02232,
P05013, P14942, P07327, P01008, P03435, P42357, P21177, Q38941,
P27895, P07756, P04775, P19096, P28167, P0C6B8, P20930, P08519,
Q7TMA5, P33450, and Q9UKN1)

Experimental Results - Design

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

1. UniProtKB/Swiss-Prot database (release 2021_04) contains 204173280
amino acid residues in 565928 sequences with a maximum length of
35213

2. 20 queries with length from 144 to 5478 (accession numbers: P02232,
P05013, P14942, P07327, P01008, P03435, P42357, P21177, Q38941,
P27895, P07756, P04775, P19096, P28167, P0C6B8, P20930, P08519,
Q7TMA5, P33450, and Q9UKN1)

3. Scoring matrix: BLOSUM62
Gap insertion: 10
Gap extension: 2

Experimental Results - Configuration & tests

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

1. Single thread at the CPU level (using flag T=1).

Experimental Results - Configuration & tests

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

1. Single thread at the CPU level (using flag T=1).

2. Different work group sizes were configured for kernel
execution.

Experimental Results - Configuration & tests

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

1. Single thread at the CPU level (using flag T=1).

2. Different work group sizes were configured for kernel
execution.

3. Each test was run twenty times and the performance was
calculated as the average.

Experimental Results - Configuration & tests

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

1. Single thread at the CPU level (using flag T=1).

2. Different work group sizes were configured for kernel
execution.

3. Each test was run twenty times and the performance was
calculated as the average.

4. GCUPS as the performance metric.

Q Database length⇾
D Sequence length⇾
t Execution time in seconds⇾

Experimental Results - Varying work group size

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

Experimental Results - Varying work group size

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

 Sensitive to the block size

Experimental Results - Varying work group size

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

Experimental Results - Varying work group size

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

Experimental Results - Varying work group size

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

Experimental Results - Varying work group size

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

No differences

Experimental Results - Varying work group size

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

Experimental Results - Varying work group size

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

Experimental Results - Varying work group size

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

 DPC++ outperforms by 5% in
average

Experimental Results - Varying query length

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

Experimental Results - Varying query length

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

Experimental Results - Varying query length

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

Same performance on both
languages

Experimental Results - Varying query length

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

Experimental Results - Varying query length

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

Experimental Results - Varying query length

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

 DPC++ outperforms CUDA on the largest

sequences.

Experimental Results - Cross-GPU vendor portability

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

 Minor changes were necessary

Experimental Results - Cross-GPU vendor portability

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

Experimental Results - Cross-GPU vendor portability

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

 cross-vendor GPU portability

Experimental Results - Cross-architecture portability

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

Experimental Results - Cross-architecture portability

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

Code only required minimal
intervention

Experimental Results - Cross-architecture portability

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

Performance could be improved
Code only required minimal

intervention

Experimental Results - Cross-architecture portability

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

Experimental Results - Cross-architecture portability

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

 cross-architecture portability

Agenda

• Motivation and Goal
• oneAPI
• Smith-Waterman
• Experimental Work
• Experimental Results
• Conclusions

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

Conclusions

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

This paper presents our experiences migrating a CUDA-based,
biological software tool to DPC++ using the oneAPI framework.

The main contributions are:

Conclusions

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

1. DPCT proved to be an e ective tool for code migration to DPC++ff

This paper presents our experiences migrating a CUDA-based,
biological software tool to DPC++ using the oneAPI framework.

The main contributions are:

Conclusions

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

1. DPCT proved to be an e ective tool for code migration to DPC++ff

2. The migrated code could be successfully executed on CPUs and
also GPUs from different vendors, demonstrating its cross-
architecture, cross-vendor GPU portability

This paper presents our experiences migrating a CUDA-based,
biological software tool to DPC++ using the oneAPI framework.

The main contributions are:

Conclusions

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

1. DPCT proved to be an e ective tool for code migration to DPC++ff

2. The migrated code could be successfully executed on CPUs and
also GPUs from different vendors, demonstrating its cross-
architecture, cross-vendor GPU portability

3. The performance results showed that the migrated DPC++ code is
comparable to the original CUDA one.

This paper presents our experiences migrating a CUDA-based,
biological software tool to DPC++ using the oneAPI framework.

The main contributions are:

Conclusions - Future Work

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

1. Understanding the gap in performance between DPC++
and CUDA code, and optimizing DPC++ code to reach
its maximum performance.

Conclusions - Future Work

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

1. Understanding the gap in performance between DPC++
and CUDA code, and optimizing DPC++ code to reach
its maximum performance.

2. Carrying out more exhaustive experimental work.

Conclusions - Future Work

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

1. Understanding the gap in performance between DPC++
and CUDA code, and optimizing DPC++ code to reach
its maximum performance.

2. Carrying out more exhaustive experimental work.

3. Running the DPC++ code on other architectures such
as FPGAs, to verify its cross-architecture portability.

¡Thank you very
much for your time!

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141

