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Migrating CUDA to oneAPI: A Smith-Waterman Case Study

GPUs can be considered the dominant accelerator, while 
CUDA is the most popular programming language for them 
nowadays Difficulty in porting the code to 

other architectures.
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A few preliminary studies assessing the usefulness of dpct can be 
found

  No study has assessed their utility in Bioinformatics
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Obtains the optimal local alignment between two biological 
sequences.

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

It has been used as the basis for many subsequent algorithms

Is often employed as a benchmark when comparing different 
alignment techniques

SW#  is a CUDA tool for computing biological 
sequence alignments that works with both 
protein and DNA sequences.
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1. Use the DPCT tool for generating a first version (Stage 1).

2. Based on the DPCT alerts, modify the resulting code (Stage 2).

3. Based on runtime errors, modify the code (Stage 3).

4. Verify that the results are correct (Stage 4).
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1. intercept-build make

2. dpct -p compile_commands.json -in-root=$PROJ_DIR
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item_ct1.barrier(sycl::access::fence_space::local_space
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✅ Different tests were run to prove that 
the DPC++ code generates correct results



Agenda

•  Motivation and Goal
•  oneAPI
•  Smith-Waterman
•  Experimental Work
•  Experimental Results
•  Conclusions

Migrating CUDA to oneAPI: A Smith-Waterman Case Study



Experimental Results - Hardware 
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CPU GPU

ID Processor RAM
(Memory)

ID Vedor
(Type)

Model
(Architecture)

GFLOPS 
peak (SP)

Core-i5 Intel Core i5-
7400

16 GB Titan NVIDIA
(Discrete)

Titan X (Pascal) 10970

Core-i3 Intel Core i3-
4160

8 GB RTX NVIDIA
(Discrete)

RTX 2070 
(Turing)

7465

Core-i9 Intel Core i9-
10920X

32 GB Iris XE Intel
(Discrete)

Iris Xe MAX 
Graphics (Gen 

12.1)

2534

Xeon Intel Xeon E-
2176G

65 GB P630 NVIDIA
(Integrated)

UHD Graphics 
P630 (Gen 9.5) 

441.6
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1. UniProtKB/Swiss-Prot database (release 2021_04) contains 204173280 
amino acid residues in 565928 sequences with a maximum length of 
35213

2. 20 queries with length from 144 to 5478 (accession numbers: P02232, 
P05013, P14942, P07327, P01008, P03435, P42357, P21177, Q38941, 
P27895, P07756, P04775, P19096, P28167, P0C6B8, P20930, P08519, 
Q7TMA5, P33450, and Q9UKN1)

3. Scoring matrix: BLOSUM62
Gap insertion: 10
Gap extension: 2
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1. Single thread at the CPU level (using flag T=1).

2. Different work group sizes were configured for kernel 
execution.

3. Each test was run twenty times and the performance was 
calculated as the average.

4. GCUPS as the performance metric.

Q  Database length⇾
D  Sequence length⇾
t  Execution time in seconds⇾
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    DPC++ outperforms by 5% in 
average
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 DPC++ outperforms CUDA on the largest 

sequences.
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Performance could be improved
Code only required minimal 

intervention
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1. DPCT proved to be an e ective tool for code migration to DPC++ff

2. The migrated code could be successfully executed on CPUs and 
also GPUs from different vendors, demonstrating its cross-
architecture, cross-vendor GPU portability

3. The performance results showed that the migrated DPC++ code is 
comparable to the original CUDA one.

This paper presents our experiences migrating a CUDA-based, 
biological software tool to DPC++ using the oneAPI framework. 

The main contributions are:
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Conclusions - Future Work

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

1. Understanding the gap in performance between DPC++ 
and CUDA code, and optimizing DPC++ code to reach 
its maximum performance.

2. Carrying out more exhaustive experimental work.

3. Running the DPC++ code on other architectures such 
as FPGAs, to verify its cross-architecture portability.



¡Thank you very 
much for your time!

Migrating CUDA to oneAPI: A Smith-Waterman Case Study


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141

