

Silesian University of Technology

European Funds Knowledge Education Development

Fuzzy-inference system for isotopic envelope identification based on analysis of the spatial distribution of components in Mass Spectrometry Imaging

> Anna Glodek 30.06.2022

> > **European Union** European Social Fund

Mass spectrometry, Mass Spectrometry Imaging (MSI)

Isotopic envelope identification – problem statement

Outline

MALDI-ToF mass spectrometry & MSI

Mass spectrometer – ions are separated according to their mass-to-charge ratio in an analyzer

Mass spectrum

MALDI-MSI

Source: Norris JL, Caprioli RM. Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem Rev 2013;113:2309–2342.

Mass spectrum

m/z

Mass spectrum

The mass spectrum can be considered as a set of peaks

Isotopic envelope

Exemplary isotopic envelope of *YDLDFK* peptide

Silesian University of Technology

	Protein 👻	PMI -	[M + nH]n+ 1 📑
	Building block	< <none></none>	
#	m/z	Abundan	Isotopomer
1	800.382497	100.000	^12C38^1H54^1
2	801.385540	44.735	^12C 37 ^13C ^1
3	802.388205	12.245	^12C 36 ^13C 2 ^
4	803.390798	2.494	^12C 35 ^13C 3 ^
5	804.393326	0.414	^12C 36 ^13C 2 ^
6	805.395817	0.058	^12C 35 ^13C 3 ^
7	806.398281	0.007	^12C 34 ^13C 4 ^
Monoiso Nominal	topic neutral m neutral mass:	ass:	799.375220 799
Average	neutral mass:		799.868606

Isotopic envelope consists of the **isotopes of one compound**

Isotopic envelope

Isotopic envelope

Data

Frozen tissue

Peptides Head and neck cancer

9 492 averaged spectra with mass channels [m/z]

109 568

2 435 peaks after pre-processing

(resampling, baseline removal, TIC normalisation, alignment to the average spectrum based on the Fast Fourier Transform, Gaussian Mixture Model)

Mamdani-Assilan fuzzyinference system

Algorithm based on the spatial distribution of peaks

Pipeline

Decision making process based on Sugeno fuzzyinference system

Pipeline

Pipeline

A term *fuzzy set* was introduced by Professor Lotfi Zadeh in 1965.

an object *x* to the fuzzy set *A*:

- An element can be included in a fuzzy set in the following ways: 1. not included: $\mu A(\mathbf{x}) = \mathbf{0}$ 2. partially included: $0 < \mu A(x) < 1$ 3. fully included: $\mu A(x) = 1$.

Silesian University of Technology

A fuzzy set A in space X can be described by a function $\mu A(x)$ or by a set of ordered pairs (x, $\mu A(x)$), where $\mu A(x)$ represents a degree of membership of

A = { (x, μ A (x)) | x [0, 1]}.

Pipeline: 1st step

Mamdani-Assilan fuzzy-inference system

Knowledge base: If *d* is *in the range* and σ is *in the range*, then *output* is *E*

Deffuzification (centre of gravity method)

Ε

The distance between two neighbouring peaks is approximately equal to 1.003 Da

$$d = \frac{1.003}{z} = 1.003$$

MALDI ~= 1.003 Da)

The variance ratio of two neighbouring peaks is approximately equal to 1

$$\sigma = \frac{\sigma_1}{\sigma_2} = 1$$

Pipeline: 1st step

Mamdani-Assilan fuzzy-inference system

Knowledge base: If *d* is *in the range* and σ is *in the range*, then *output* is *E*

Deffuzification (centre of gravity method)

m σ

Input no. 1 (d)	Input no. 2 (σ)	Output
0.99 1.01	0.99 1.01	0.9405 1.0
0.0637 0.0637	0.02 0.1	0.09216 0.08

Knowledge base: If d is in the range and σ is in the range, then output is E

> Deffuzification (centre of gravity method)

Knowledge base: If d is in the range and σ is in the range, then output is E

> Deffuzification (centre of gravity method)

Pipeline: 1st step

Mamdani-Assilan fuzzy-inference system

• **maximum** as an *s*-norm for **aggregation** of results for every rule

Knowledge base: If d is in the range and σ is in the range, then output is E

> Deffuzification (centre of gravity method)

Centre of Gravity method:

threshold, define the GMM order to In **decomposition** was applied. The number of

Cutoff: 0.8363

Pipeline: 2nd step Spatial distribution of peaks – maps of intensities **Differential intensity map Intensity map 1 Intensity map 2** Peak 1 – Peak 2 Peak 1

Envelope)

nE (non

Peak 2

- σ standard deviation,
- c mean for each Gaussian function.

Results Sugeno fuzzy-inference system

m/z ₁	m/z ₂	Possibility of isotopic envelope membership [%]
805.6	809.7	46 (Non-envelope)
808.7	809.7	74.7 (Envelope)
810.7	811.7	98.1 (Envelope)
810.8	897.6	15.3 (Non-envelope)
812.7	813.7	98.7 (Envelope)
812.7	897.6	25.1 (Non-envelope)
843.7	844.7	99 (Envelope)

Members of an isotopic envelope are characterised by possibility values bigger than 50%.

Isotopic envelope members are characterized by the lower number of peaks within the range <-0.2; 0.2>
 <u>Reason:</u> peaks of one isotopic envelope in such a range of m/z values (~800 - ~1000 Da) follow such a pattern:

the first peak has the highest intensity (monoisotopic peak), whereas the successive peaks represent ~45% and ~12% of the intensity of the first peak, respectively. According to that, the intensity histogram of peaks included in one envelope is denser within the range <-0.2; 0.2>.

Results Sugeno fuzzy-inference system

Envelope

The obtained results were compared to results of an analysis of an average MSI spectrum performed by **an experienced mass spectrometrist**, **who assessed whether a particular isotopic peak belonged to a given isotopic envelope based on the theoretical isotope pattern for a peptide with a given mass.** The theoretical isotopic pattern for a peptide was obtained using the *Compass IsotopePattern Calculator* (Bruker®) taking into account the peptide sequence obtained in an **LC-MALDI MSMS analysis of the tissue protein extract.**

non-Envelope

Different approach Fuzzy C-means clustering approach

- Data point can belong to **two or more clusters**
- **Soft Clustering method:** every data point **can belong to every cluster with a certain** • **degree**: likelihood or probability score
- **Fuzzy C-means segmentation** was performed by converting an input differential image into • two segments by the fuzzy C-means algorithm

Results Fuzzy C-means clustering approach

Final segmentation after fuzzy C-means clustering

Envelope: no structure visible **non-Envelope:** clear structure visible

Silesian University of Technology

Enve	elope	Non-envelope		
Cluster center 1	Cluster center 2	Cluster center 1	Cluster center 2	
2.6	32.4	7.0	71.7	
2.1	23.9	7.9	86.1	
2.2	23.6	7.7	81.0	

cluster center:

arithmetic mean of all the data points that belong to the specific cluster

Envelope peaks are characterized by significantly **lower values** in comparison to the non-envelope ones

Summary

of an isotopic envelope.

There are a plethora of algorithms for deisotoping, but they are usually dedicated to a specific type of experimental platform (e.g. MS-Deconv, BPDA) or type of a molecule (lipids or peptides, e.g. YADA, BPDA).

The presented method can be used **for each kind of mass spectrum**, no matter what type of mass spectrometry experiment it comes from, and various types of molecules, as it takes into consideration only one aspect of a mass spectrum: **spatial** distribution of the peaks.

Limitations: the proposed method is **dedicated only to molecular imaging techniques** and cannot be used in other proteome studies.

In this work we proposed an algorithm **for automatic identification**

Acknowledgements	Joanna Po
	Marta Ga of Oncology
	Jacek Łęs
	Katarzyna
	This wo
	Union g
	Fund, p
	Acknowledgements

Polańska, Professor, Silesian University of Technology, Poland

Gawin, PhD, Maria Sklodowska-Curie Memorial Cancer Center and Institute logy Gliwice Branch

Lęski, Professor, Silesian University of Technology, Poland

yna Frątczak, MSc, Silesian University of Technology, Poland

work was co-financed by European on grant under the **European Social d, project no. POWR.03.02.00-00-I029.**

Thank you for your attention

