Comparison of Stranded and Non-Stranded RNA-Seq in Predicting Small RNAs in a Non-Model Bacterium

Karel Sedlar, Ralf Zimmer Institute of BioInformatics

LUDWIG-MAXIMILIAN UNIVERSITÄT MÜNCHEN

small RNAs

- were shown to play important regulatory roles in diverse cellular processes by participating in post-transcriptional regulation of gene expression
- two types of sRNAs: *cis*-encoded and *trans*-encoded

- cis-encoded (perfect base pairing): transcription terminators, potential inhibitors of translation initiation, or modulators of mRNA degradation
- trans-encoded (imperfect base pairing): a wider range of regulatory mechanisms repressors of expression but also activators

sRNAs in bacteria

- former studies suggested conservation of sRNA (E. coli vs. S. enterica)
 - June 2022: 1 199 199 genome assemblies of 43 669 bacterial species
 - no. of predicted ncRNAs per genome: lower units (PGAP Rfam cmsearch)
- specialized lab techniques: GRIL-Seq, RIP-Seq, RIL-Seq, ...
- use of standard RNA-Seq
 - stranded vs. non-stranded
 - in combination with homology based searches
 - direct prediction: APERO, Rockhopper, baerhunter,...

5 10 15 20 25 30 35 0 Time (h)

• grey vs. green vs. biological H₂

Comparison of Stranded and Non-Stranded RNA-Seq in Predicting Small RNAs in a Non-Model Bacterium

5

(-) Hd

(-)^{ши009}00

application in biotech

- sRNA was proved can improve bacterial phenotype, for example, tolerance to acids
- Clostridium beijerinckii NRRL B-598
 - gram-positive anaerobe, ABE fermentation, hydrogen producer
 - bi-phasic fermentation: acidogenic and solventogenic
 - sRNAs are unknown
 - non-stranded and stranded RNA-Seq available

10

15

20

25

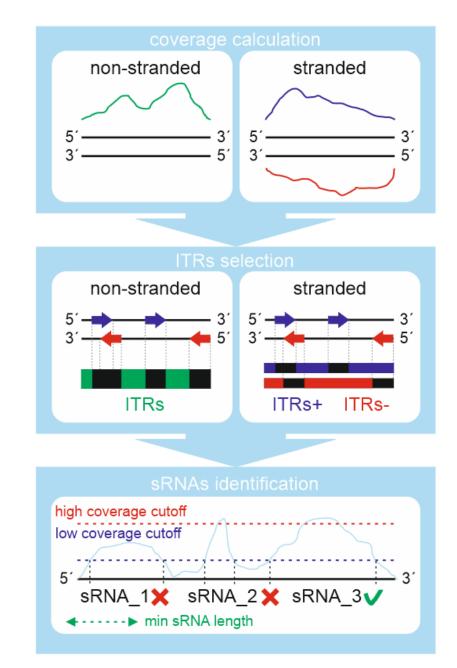
Time (h)

30

40

40

35


50

50

45

materials and methods

- library A:
 - cDNA was synthesized by using a random hexamer-primer (non-stranded data)
 - Illumina HiSeq 4000, single-end, 50 bp
- library B:
 - NEBNext Ultra II stranded kit (reversely stranded)
 - Illumina NextSeq500, single-end, 75 bp
- preprocessing:
 - rRNA not removed vs. rRNA removed
 - settings 1: min PHRED 3, window 4 bp average quality ≥ 15, minimum length 36 bp
 - settings 2: min PHRED 10, window 4 bp average quality ≥ 25, minimum length 20 bp

preprocessing

Sample	Trimming settings	rRNA removal	No. of reads in a sample (million)	No. of mapped reads (million)
A1	1	No	21.0	11.9
A2	2	No	20.6	11.7
A1r	1	Yes	12.3	11.8
A2r	2	Yes	12.2	11.6
B1	1	No	52.5	15.3
B2	2	No	48.9	14.3
B1r	1	Yes	15.2	14.6
B2r	2	Yes	15.7	13.7

considering the number of mapped reads and their length, library A contains only half of the sequenced bases in comparison to B

stranded predictions

- = baerhunter
 - low coverage cutoff: 10
 - high coverage cutoff: 50
 - min sRNA length: 40

	No. of sRNA genes			
Sample	<i>trans</i> - encoded	<i>cis</i> -encoded	total number	
B1	121	115	236	
B2	115	99	214	
B1r	121	101	222	
B2r	115	87	202	

- *trans*-encoded sRNAs detection: rRNA removal has no effect
- cis-encoded sRNAs affected by quality trimming as well as computational ribodepletion

non-stranded predictions

- only trans-encoded sRNAs can be predicted
- library B data were handled as non-stranded

Sample	Α	В	A∩B
X1	76	109	32
X2	75	108	30
X1r	76	109	32
X2r	75	108	30

- independence of ribodepletion confirmed
- predicted sRNA differed between libraries

evaluation

• baerhunter's stranded prediction as a reference

Sample	Α		В	
	Precision	Recall	Precision	Recall
X1/X1r	44.7%	28.1%	97.2%	87.6%
X2/X2r	42.7%	27.8%	94.4%	88.7%

- after adjustment to different sequencing depth
 - low coverage cutoff: 10
 - high coverage cutoff: 25
 - min sRNA length: 40

Sample	sRNAs	Precision	Recall
A1/A1r	113	62.8%	93.4%
A2/A2r	114	63.3%	99.1%

Comparison of Stranded and Non-Stranded RNA-Seq in Predicting Small RNAs in a Non-Model Bacterium

conclusions

- direct prediction from standard RNA-Seq data seems to be advantageous
- current tools require the stranded RNA-Seq, but sRNAs can also be identified using non-stranded RNA-Seq with comparable sensitivity
- although the detection is "independent" of computational ribodepletion, it is highly influenced by sequencing depth that needs to be calculated from mRNA (and sRNA) sequences only
- results depend on a threshold that has to be set up manually in current tools, more benchmarking is needed to ensure reliable and fully automatic prediction of small RNAs in bacterial genomes

acknowledgement

 the research was conducted within the project "The Annotation and Functional Description of Non-Model Bacterial Organisms for Bio-based Engineering and Industry (HOPE-4-BEST)"

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 101023766.

Comparison of Stranded and Non-Stranded RNA-Seq in Predicting Small RNAs in a Non-Model Bacterium