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Abstract. This paper presents a method for the segmentation of the
blood vessels, which form the retinal vascular network, in color fundus
photographs. It is based on the idea of local binary pattern operators
(LBP, LTP, CLBP) and evolutionary neural networks. Thus, a new ope-
rator, called SMLBP, is used to obtain a feature vector for every pixel in
the image. Then we build a data set out of these features and train an
evolutionary arti�cial neural network (ANN). We do not use a classical
method for training ANN. Instead, we use an evolutionary algorithm ba-
sed on grammatical evolution. The evaluation of the method was carried
out using two of most used digital retinal image databases in this �eld:
DRIVE and STARE. The method obtains competitive performance over
other methods available in the relevant literature in terms of accuracy,
sensitivity and speci�city. One of the strengths of our method is its low
computational cost, due to its simplicity.

Keywords: Blood vessel segmentation, retinal images, local binary pat-
terns, evolutionary arti�cial neural networks, grammatical evolution.

1 Introduction

The study of the retinal blood vessel network provides useful information to opht-
halmologists for the diagnosis of many ocular diseases. Thus, certain pathologies,
such as diabetic retinopathy, hypertension, atherosclerosis or macular degenera-
tion age, can a�ect the vessels morphology causing changes in their diameter,
tortuosity or branching angle. The manual retinal vascular network segmentation
requires much training and skill, and is therefore a slow process. Consequently,
the appearance of automatic segmentation methods implies a great advantage
for both the diagnosis and monitoring of retinal diseases, provided they are
fast and e�cient. Over the last few decades, di�erent methods for segmenting
the vascular network have been emerging. Basically, in the relevant literature,
we found two ways of approaching the problem: either through unsupervised
methods [1,2,3,4,17,18] or by supervised methods [5,8,11,12,13,14]. The method
presented in this paper belongs to the second group. Basically, it is based on
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the extraction of LBP features from the retinal images and these will be used
to train an evolutionary arti�cial neural network (EANN). Once the EANN is
built, each pixel of a new image can be labeled as belonging or not to blood
vessels.

The article is organized as follows. Section 2 describes the proposed segmenta-
tion method. In section 3, we test the performance of our method and compare
with other competitive segmentation methods. Finally, section 4 presents the
conclusions.

2 Description of the Segmentation Method

Building the feature vector

Local Binary Patterns (LBP) [9] are a type of features very frequently used for
textures classi�cation in computer vision. An important property of LBP is its
invariance to rotation and illumination changes. The calculation of that feature
consists of comparing the intensity of a pixel, gc, with its neighboring P pixels,
gp, uniformly spaced on a radius R, and considering the result of each comparison
as a bit in a binary string. In that comparison, only the sign, s(x), is considered:

LBPP,R =

P−1∑
p=0

s(gp − gc)2p, where s(x) =

{
1, x ≥ 0

0, x < 0
(1)

The result of (1) is a single number characterizing the local texture of the
image. This operator is monotonic grayscale transformation invariant. To make
it rotation invariant (�ri �), Ojala et al. [9] de�ned the LBP ri

P,R operator:

LBP ri
P,R = min{ROR(LBPP,R, i) | i = 0, 1, . . . , P − 1} (2)

where ROR(x, i) performs a circular bit-wise right shift on the P-bit number, x,
i-times.

Since we are trying to detect geometric patterns instead of textures, we ex-
perimented with several variations of the LBP operator, such as LTP [15] and
CLBP [19]. Finally, we introduce in this paper a new operator, called sign-
magnitude LBP (SMLBP), which has six rotation invariant components, Sri

P,R,

PSri
P,R, NS

ri
P,R, M

ri
P,R, PM

ri
P,R and NMri

P,R. The �rst three are related to sign

(S) values, positive (PS) and negative (NS), and the last three to magnitude
(M) values, positive (PM) and negative (NM). Thus, SMLBP−S

ri
P,R is the same

as LBP ri
P,R (see eq. (2)). The values of SMLBP−PS

ri
P,R and SMLBP−NS

ri
P,R

are evaluated as the rotation invariant versions of the positive (LTP−PS) and
negative (LTP−NS) components of LTP :

SMLBP−PS
ri
P,R = min{ROR(LTP−PSP,R, i) | i = 0, 1, . . . , P − 1} (3)

SMLBP−NS
ri
P,R = min{ROR(LTP−NSP,R, i) | i = 0, 1, . . . , P − 1} (4)

where
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LTP−PSP,R =

P−1∑
p=0

s(gp − (gc + δ))2p, and s(x) =

{
1, gp ≥ gc + δ

0, otherwise
(5)

LTP−NSP,R =

P−1∑
p=0

s(gp − (gc − δ))2p, and s(x) =

{
1, gp ≤ gc − δ
0, otherwise

(6)

and δ > 0 is a threshold selected by the user. The �rst component, concerning
magnitude, SMLBP−M

ri
P,R, is equivalent to the rotation invariant version of

component CLBP−M in CLBP :

SMLBP−M
ri
P,R = min{ROR(CLBP−MP,R, i) | i = 0, 1, . . . , P − 1} (7)

where

CLBP−MP,R =

P−1∑
p=0

t(mp, c)2
p, and t(x, c) =

{
1, x ≥ c
0, x < c

(8)

and wheremp = |gp − gc|, and c is calculated as the average value of |gp − gc|, for
all pixels of the image. Finally, based on the mixture of LTP and CLBP−M , we
give the following de�nitions to build the last two components, SMLBP−PM

ri
P,R

and SMLBP−NM
ri
P,R:

SMLBP−PM
ri
P,R = min{ROR(SMLBP−PMP,R, i) | i = 0, 1, . . . , P − 1} (9)

SMLBP−NM
ri
P,R = min{ROR(SMLBP−NMP,R, i) | i = 0, 1, . . . , P − 1} (10)

where

SMLBP−PMP.R =

P−1∑
p=0

t(mp, c)2
p, and t(x, c) =

{
1, x ≥ c+ δ

0, otherwise
(11)

SMLBP−NMP.R =

P−1∑
p=0

t(mp, c)2
p, and t(x, c) =

{
1, x ≤ c− δ
0, otherwise

(12)

and where mp, c and δ have the same meaning as the above equations.

Building the evolutionary neural network

In order to train the ANN, a training dataset is build from the training DRIVE
image database [14], which is composed of 20 images. For each training RGB
image, the following steps are applied: (i) we select the green channel because
it is assumed that this channel gives the highest contrast between vessel and
background [4]; (ii) a Gaussian �ltering is used in that channel to remove noise,
mainly due to the digitization of the image; (iii) the operators SMLBP ri

P,R, with
R = {r1, . . . , rm} and P = {p1, . . . , pn}, is applied to the image pixels. Thus,
each register of the training dataset is composed of a feature vector of 6×m×n
components, plus an additional component that stores the class value (vessel
o non-vessel). For each training image, the vessel features are obtained from
all the vessel pixels, according to the gold standard mask. On the other hand,
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non-vessel features are obtained randomly from the rest of non-vessel pixels, by
sampling an amount of non-vessel pixels equal to the number of vessel pixels.

We use an evolutionary algorithm to build the ANN. It was implemented
using grammatical evolution [10] and is based on the grammar proposed in [16].
The �nal ANN obtained is a classical multilayer perceptron (MLP) that is ob-
tained by selecting the best MLP of a population of MLPs. This population
corresponds to the �nal evolved population that results of running the evolu-
tionary algorithm. This kind of algorithms allows designing the topology of the
network without user's intervention. Thus they adjust automatically the connec-
tion weights, select automatically the number of neurons in the hidden layer and
also select automatically, from the initial set of feature inputs, the most discri-
minant features as inputs. The net obtained, called ANN of vessels (ANN_V),
was trained with SMLBP ri

P,R vector, selecting R = {1, 2, . . . , 9} and P = {24}.
In order to further improve the accuracy of previous ANN, a new net, called

ANN of thin vessels (ANN_TV), is build. As its name indicates, that net is
specialized in detecting thin blood vessels. The ANN_TV building procedure
is the same as that one used with ANN_V. Previously, an image dataset of
thin vessel was build. Thus, for each vessel mask from the training DRIVE
mask database, we apply a tophat transformation, with disk shaped structuring
element of radius equal to one pixel. The result is a set of training masks with
only thin vessels. Finally, the ANN_TV was trained with SMLBP ri

P,R vectors,
selecting R = {1, 2, 3} and P = {24}.

Segmentation method

Fig. 1 shows a block diagram of the segmentation process, once the two ANNs
have been trained. An example of the output of each block can be also seen in �g.
2, as result of processing a input RGB retinal image. Thus, �rst of all, a Gaussian
�lter is applied to the green channel of the input RGB image (�g. 2a). Then the
output of ANN_TV (�g. 2b) and ANN_V (�g. 2c) are calculated, using the
�ltered green channel as input. Afterward the ANN_TV output is thresholded
and binarized (�g. 2d). A threshold is also applied to the ANN_V output for
assigning zeros to all the pixels below to that threshold (�g. 2e). Subsequently,
for adding the information provided from red and blue channels of the image,
these two channel and the output produced by the ANN_V are normalized and
used as inputs to a k-means algorithm, with k = 2. Two cluster are obtained:
one of them is associated to noise, usually belonging to the bright part of the
papilla, and the other corresponds to a binary image of blood vessels (�g. 2f).
Then a logical OR operator is applied, using as inputs the binarized output of
ANN_TV and the binarized vessel cluster, to obtain a �rst approximation to
the binary segmentation mask of retinal vascular network (�g. 2g). However, this
segmentation has a lot of noise in the form of little blobs. Finally, these blobs
are removed with a blob size �lter (�g. 2h).
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Fig. 1: Block diagram of the segmentation process.
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Fig. 2: Output resulting from each stage of the segmentation process described in Fig.

1: (a) Original image, (b) ANN_TV, (c) ANN_V, (d) thresholded ANN_TV, (e)

thresholded ANN_V, (f) K-Means cluster, (g) OR operator, (h) Blob size �ltering.
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3 Results and Discussion

The ANN_V obtained from the training phase is composed of two neurons in the
hidden layer and only four inputs (PMri

5,24, NM
ri
5,24,M

ri
8,24, PS

ri
9,24) of the �fty-four

available features. On the other hand, the ANN_TV obtained is composed of
two neurons in the hidden layer and two inputs (PSri

2,24, PM
ri
3,24) of the eighteen

available features. The best result of the segmentation method, in terms of mean
accuracy, is obtained with an blob �lter size of η = 30 pixels. However, it should
be noted that, while the accuracy and speci�city increase with η, the sensitivity
has the opposite behavior. This e�ect is shown in Fig. 3
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Fig. 3: Variation of accuracy, sensitivity and speci�city (y-axis), as a function of the

blob �lter size,η, (x-axis), for the test DRIVE database.

Table 1, shows the accuracy, sensitivity and speci�city of our method applied
to the test images from DRIVE database (η = 24 and η = 30). These results are
compared with those obtained by other vessels segmentation methods existing
in the relevant literature. As it can be seen, our results are competitive.

To check the robustness of our segmentation method, we applied it in the
STARE database [4]. The method was applied without changes, that is, we used
the same ANNs as those trained from the DRIVE database. As it is shown in
Table 2, despite the di�erence in the quality of the two image databases (worst
in STARE), our segmentation results remain competitive.

Finally, Table 3 shows the computational cost of our method, compared to the
other methods. From all the segmentation times reported in the literature (this
information is not always available), our method is the fastest. The explanation
for this behavior is based on the fact that our method only needs to compute
six SMLBP ri features per pixel and the computational cost of evaluating the
two ANNs is low.
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Table 1: Performance of vessel segmentation methods (test DRIVE database)
Segmentation Method Average Accuracy±SD Sensitivity Speci�city

Lam et al[5] 0.9595 N.A N.A

Ricci&Perfetti[11] 0.9595 N.A N.A

2nd Human observer 0.9470±0.0048 0.7763 0.9725

Soares et al. [13] 0.9466±0.0058 0.7285 0.9786

Miri&Mahloojifar[7] 0.9458 0.7352 0.9795

Mendoça&Campilho[6] 0.9452±0.0062 0.7344 0.9764

Proposed Method (η = 30)(LBP+EANN) 0.9444±0.0065 0.7075 0.9768

Proposed Method (η = 24)(LBP+EANN) 0.9442±0.0065 0.7134 0.9781

Staal et al. [14] 0.9441±0.0065 0.6780 N.A

Fraz et al. [2] 0.9430±0.0072 0.7152 0.9768

Niemeijer et al. [8] 0.9416±0.0065 0.6898 0.9696

Zana&Klein [18] 0.9377±0.0077 0.6453 0.9769

Fraz et al.[3] 0.9303±0.0079 0.7114 0.9680

Table 2: Performance of vessel segmentation methods (STARE database)
Segmentation Method Average Accuracy Sensitivity Speci�city

Ricci and Perfetti [11] 0.9646 N.A N.A

Lam et al. [5] 0.9567 N.A N.A

Staal et al. [14] 0.9516 0.6970 0.9810

Soares et al. [13] 0.9478 0.7197 0.9747

Fraz et al. [2] 0.9442 0.7311 0.9680

Proposed Method(η = 30) (LBP+EANN) 0.9371 0.7432 0.9592

Fraz et al. [3] 0.9367 0.6849 0.9710

2nd human observer 0.9348 0.8951 0.9384

Hoover et al. [4] 0.9275 0.7500 0.9562

Table 3: Running times (per image) for di�erent vessel segmentation methods
Method Time PC Software

Proposed Method (LBP+EANN) 2.5 s i5 3.1GHz, 8GB RAM Matlab

Fraz (Bit plane slicing)[3] 35 s Centrino, 2GHz, 1GB RAM Matlab

Mendoça&Campilho[6] 2.5-3 m Pentium 4, 3.2 GHz, 960 Mb RAM Matlab

Soares et al. [13] 3 m AMD Athlon XP2700, 2GHz, 1GB RAM Matlab

Lam et al. [5] 13 m Duo CPU 1.83 GHz, 2GB RAM Matlab

Staal et al. [14] 15 m Pentium III, 1.0 GHz, 1 GB RAM Matlab
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4 Conclusions

The segmentation method of blood vessels in retinal images, presented in this
paper, obtains values of accuracy, sensitivity and speci�city competitive with
the best existing methods in the relevant literature concerning this matter. Mo-
reover, from all the segmentation times reported, our method obtains the best
segmentation time, because it only needs to calculate LBP values, whose cost
is very low, and apply them to two ANNs which are already trained. It is also
shown the advantage of using grammatical evolution for learning ANNs, avoiding
the user's e�ort of designing the network topology (number of neurons in the
hidden layer) and selecting the most discriminative input features. These two
advantages allow obtaining ANNs fairly simple, compact and with great power
of generalization, as evidenced by the competitive segmentation results obtai-
ned by applying our method to a database that is di�erent from that used for
training. This work also provides evidence of the utility of using LBP operators
in detecting geometric patterns, in addition to their well-known properties in
detecting textures.
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