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Abstract. The idea of symbolic biological experiments opens up an ex-
citing new world of challenging applications for formal methods. Pathway
Logic is a step towards a vision of symbolic systems biology. In this paper
we describe the Pathway Logic approach to the modeling and analysis of
signal transduction, and the use of the Pathway Logic Assistant (PLA)
tool to browse and query these models. The epidermal growth factor
(EGF) signaling pathway is used to illustrate the concepts. In particu-
lar, formal executable models of processes such as signal transduction,
metabolic pathways, and immune system cell-cell signaling are developed
using the rewriting logic language Maude and a variety of formal tools
are used to query these models.

Keywords: signal transduction, symbolic systems biology, epidermal
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1 Introduction

Rewriting logic [35, 38] is a logic of concurrent change that can naturally deal
with states and with highly nondeterministic concurrent computations. It has
good properties as a flexible and general semantic framework for giving semantics
to a wide range of languages and models of concurrency. Moreover, it allows user-
definable syntax with complete freedom to choose the operators and structural
properties appropriate for each problem.

The naturalness of rewriting logic for modeling and experimenting with math-
ematical and biological problems has been illustrated in a number of works [9].
The basic idea is that we can model a cell as a concurrent system whose con-
current transitions are precisely its biochemical reactions. In fact, the chemical
notation for a reaction like AB −→ C D is exactly a rewriting notation. In this
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way we can develop symbolic models of biological systems which we can then
analyze just as we would analyze any other rewrite theory, for example using
search and model checking.

Rewriting logic, through Pathway Logic and Pathway Logic Assistant [57],
can: (1) display the network of signaling reactions for a specified model; (2) for-
mulate and submit queries to find pathways, for example activating one protein
without activating a second protein, or exhibiting a phenotype signature such as
apoptosis; (3) compare two pathways; (4) find single or double knockouts (indi-
vidual or pairs of proteins whose omission prevents reaching a specified state);
(5) compute and display subnets for which given proteins are critical; and (6)
map gene expression data onto signaling networks.

The paper is organized as follows. In Section 2 we show the importance of
biological pathways and review some approaches, especially symbolic models,
which are used at present. Then Section 3 emphasize those aspects of rewriting
logic and Maude that will be used in our specifications. Section 4 introduces
Pathway Logic. Results of our implementation to the study of the EGFR model
are included in Section 5.

2 Biological Signaling Pathways

The growth of genomic sequence information combined with technological ad-
vances in the analysis of global gene expression has revolutionized research in
biology and biomedicine [5, 59]. However, the vast amounts of experimental data
and associated analyses now being produced have created a need for new ways
of integrating this information into theoretical models of cellular processes for
guiding hypothesis creation and testing. Investigation of mammalian signaling
processes, the molecular pathways by which cells detect, convert, and internally
transmit information from their environment to intracellular targets such as the
genome, would greatly benefit from the availability of such predictive models.

Most signaling pathways involve the hierarchical assembly in space and time
of multi-protein complexes or modules that regulate the flow of information ac-
cording to logical rules [30]. Moreover, these pathways are embedded in networks
having stimulatory, inhibitory, cooperative, and other connections to ensure that
a signal will be interpreted appropriately in a particular cell or tissue [42].

Computational models of biological processes such as signal transduction
fall into two main categories: differential equations to model kinetic aspects; and
symbolic/logical formalisms to model structure, information flow, and properties
of processes such as what events (interactions/reactions) are checkpoints for or
consequences of other events.

Models of system kinetics based on differential equations use experimen-
tally derived or inferred information about concentrations and rates to simulate
changes in response to stimuli as a function of time [29, 52, 53, 60]. Such models
are crucial for rigorous understanding of, for example, the biochemistry of sig-
nal transduction [13, 28]. However, the creation of such models is impeded by
the great difficulty of obtaining accurate intra-cellular rate and concentration
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information, and by the possibly stochastic nature of cellular scale populations
of signaling molecules [32, 44]. Analysis of such models by numerical and prob-
abilistic simulation techniques becomes intractable as the number of reactions
to be considered grows [17]. Furthermore, for the present purpose the questions
we want to ask of a model involve qualitative concepts such as causality and
interference rather than detailed quantitative questions [49].

Symbolic/logical models allow one to represent partial information and to
model and analyze systems at multiple levels of detail, depending on informa-
tion available and questions to be studied. Such models are based on formalisms
that provide language for representing system states and mechanisms of change
such as reactions, and tools for analysis based on computational or logical infer-
ence. Symbolic models can be used for simulation of system behavior. In addition
properties of processes can be stated in associated logical languages and checked
using tools for formal analysis. A variety of formalisms have been used to de-
velop symbolic models of biological systems, including Petri nets [24, 31, 40];
ambient/membrane calculi [39, 43, 47]; statecharts [14]; live sequence charts; and
rule-based systems [12, 15, 18, 26]. Each of these formalisms was initially devel-
oped to model and analyze computer systems with multiple processes executing
concurrently. Several tools for finding pathways in reaction and interaction net-
work graphs have been developed. However as pointed out in [11], paths found
in these graphs do have not much to do with biochemical pathways.

Models that rely on quantitative information (BioSPI [46, 48], PRISM [6], P-
systems [43]) are limited by the difficulty in obtaining the necessary rate data.
Missing or inconsistent data (from experiments carried out under different con-
ditions, and on different cell types) are likely to yield less reliable predictions.
Models that abstract from quantitative details avoid this problem, but the ab-
stractions may lead to prediction of unlikely behavior, or miss subtle interactions.

The Pathway Logic Assistant extends the basic representation and execution
capability with the ability to support multiple representations, to use different
formal tools to simplify and analyze the models, and to visualize models and
query results. Other efforts to integrate tools for manipulating models include
the Systems Biology Workbench [25], the Biospice Dashboard [21], and IBM
Discoverylink [23].

Our approach focuses on developing abstract qualitative models of metabolic
and signaling processes that can be used as the basis for analysis by powerful
tools, such as those developed in the formal methods community, to study a
wide range of questions.

Currently there are several implementations of Pathway Logic models [9, 38,
41, 56]. Some of these models are: STM6 (a model of cellular response to external
stimuli), Protease (a network model of gram+ bacterial proteases), Mycolate (a
model of the Mycobacterial Mycolic Acid Biosynthesis Pathway), GlycoSTM (a
model of glycosylation extending the KEGG pathways).
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3 Rewriting Logic Computation: Maude

Rewriting logic was first proposed by Meseguer in 1990 as a unifying framework
for concurrency [35]. Since then a large body of work by researchers has con-
tributed to the development of several aspects of the logic and its applications in
different areas of computer science [34, 36–38]. Rewriting logic has been applied
to bioinformatics [1, 3, 41], to modeling the dynamics of chemical systems [2],
and to chemically and biologically inspired membrane systems [33].

Rewriting logic is a logic of change in which the distributed states of a system
are understood as algebraically axiomatized data structures, and the basic local
changes that can concurrently occur in a system are axiomatized as rewrite rules
that correspond to local patterns that, when present in the state of a system,
can change into other patterns.

A rewrite theory consists of a signature (which is taken to be an equational
theory) and a set of labelled (conditional) rewrite rules. The signature of a
rewrite theory describes a particular structure for the states of a system (e.g.,
multiset, binary tree, etc.) so that its states can be distributed according to
the laws of such a structure. The rewrite rules in the theory describe which
elementary local transitions are possible in the distributed state by concurrent
local transformations. The deduction rules of rewriting logic allow us to reason
formally about which general concurrent transitions are possible in a system
satisfying such a description. Thus, computationally, each rewriting step is a
parallel local transition in a concurrent system. Alternatively, however, we can
adopt a logical viewpoint instead, and regard each rewriting step as a logical
entailment in a formal system.

Maude [8–10] is a high performance language and system supporting both
equational and rewriting logic computation. A key novelty of Maude is the effi-
cient support for rewriting, narrowing, and unification modulo equational theo-
ries such as those used to model lists or multisets. Maude modules are theories
in rewriting logic. The most general Maude modules are called system modules
and are written as mod T endm, with T the rewrite theory in question expressed
with a syntax quite close to the corresponding mathematical notation.

Maude provides a high-performance rewriting engine featuring matching mod-
ulo associativity, commutativity, and identity axioms. Matching is used to de-
termine if a rule applies to a system state and the result of application. The
associativity, commutativity, and identity axioms are used to describe states
that are mixtures. In this case, the order in which the elements are presented
does not matter. This allows rules for reactions in such mixtures to be described
very compactly and naturally. Maude also provides search and model-checking
capabilities. Thus, given a specification S of a system, one can execute S by
rewriting to find one possible behavior, use search to see if a state meeting a
given condition can be reached; or model-check S to see if a temporal property
is satisfied, and if not to see a computation that is a counter example.

The Maude system, its documentation, a collection of examples, some case
studies, and related papers are available on the Maude web page at http://

maude.csl.sri.com.
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4 Pathway Logic

Pathway Logic [15, 58, 56] is an approach to the modeling and analysis of molecu-
lar and cellular processes based on rewriting logic. Pathway Logic models of bio-
logical processes are developed using the Maude system. A Pathway Logic knowl-
edge base includes data types representing cellular components such as proteins,
small molecules, or complexes; compartments/locations; and post-translational
modifications. Rewrite rules describe the behavior of proteins and other com-
ponents depending on modification state and biological context. Each rule rep-
resents a step in a biological process such as metabolism or intra/inter-cellular
signaling. A collection of such facts forms a formal knowledge base. A model
is then a specification of an initial state (cell components and locations) inter-
preted in the context of a knowledge base. Such models are executable and can
be understood as specifying possibly ways a system can evolve. Logical inference
and analysis techniques are used for simulation to study possible ways a system
could evolve, to assemble pathways as answers to queries, and to reason about dy-
namic assembly of complexes, cascading transmission of signals, feedback-loops,
cross talk between subsystems, and larger pathways. Logical and computational
reflection can be used to transform and further analyze models.

Given an executable model such as that described above, there are many
kinds of computation that can be carried out, including: static analysis, forward
simulation, forward search, backward search, explicit state model checking, and
meta analysis. All types of search are extremely fast, thanks to the natural
definition of biological processes in the form of rewriting rules. Despite the initial
NP-complete complexity [20] with a large number of rules, the Maude language
(underlying Pathway Logic) efficiently handles this situation.

Pathway Logic models are structured in four layers: sorts and operations,
components, rules, and queries. The sorts and operations layer declares the main
sorts and subsort relations, the logical analog to ontology. The sorts of entities
include Chemical, Protein, Complex, and Location (cellular compartments),
and Cell. These are all subsorts of the Soup sort that represents unordered mul-
tisets of entities. The sort Modification is used to represent post-translational
protein modifications. They can be abstract, just specifying being activated,
bound, or phosphorylated. Modifications are applied using the operator [ - ].
For example the term [EgfR - act] represents the activation of the epidermal
growth factor receptor EgfR.

A cell state is represented by a term of the form [cellType | locs] where
cellType specifies the type of cell, for example Fibroblast, and locs represents
the contents of a cell organized by cellular location. Each location is represented
by a term of the form {locName | components} where locName identifies the
location (for example CLm for cell membrane, CLc for cell cytoplasm, CLo for
the outside of the cell membrane, CLi for the inside of the cell membrane) and
components stands for the mixture of proteins and other compounds in that
location.

The components layer specifies particular entities (proteins, chemicals) and
introduces additional sorts for grouping proteins in families. The rules layer
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Fig. 1. Pathway Logic Assistant: Rac1 activation model as a Petri net. Ovals are oc-
currences, with initial occurrences darker. Rectangles are transitions. Two way dashed
arrows indicate an occurrence that is both input and output. The full net is shown
in the upper right thumbnail. A magnified view of the portion in the red rectangle is
shown in the main view.

contains rewrite rules specifying individual steps of a process. These correspond
to reactions in traditional metabolic and interaction databases. The queries layer
specifies initial states and properties of interest.

The Pathway Logic Assistant (PLA) provides an interactive visual represen-
tation of Pathway Logic models and facilitates the following tasks: display the
network of signaling reactions for a given dish; formulate and submit queries to
find pathways; visualize gene expression data in the context of a network; or
compute and display the downstream subnet of one or more proteins. Given an
initial dish, the PLA selects the relevant rules from the rule set and represents
the resulting reaction network as a Petri net. This provides a natural graphical
representation that is similar to the hand drawn pictures used by biologists, as
well as very efficient algorithms for answering queries.

PLA manages the different model and computation representations and pro-
vides functions for moving from one representation to another, for answering
user queries, displaying and browsing the results. The principle data structures
are: PLMaude models, Petri net models, Petri subnets, PNMaude modules, com-
putations (paths), and Petri graphs [57]. Figure 1 gives an overview of the PLA
interface.

Model checking expands the collection of properties that can be investigated.
Model-checking tools are based on algorithms to determine if all computations
of a system satisfy a given property. PLA can acquire new knowledge, it allows
to infer results for specific input states which are not known a priori.
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The Pathway Logic and PLA system, its documentation, a collection of ex-
amples, some case studies, and related papers are available at http://pl.csl.
sri.com.

5 Epidermal Growth Factor Signaling in Pathway Logic

In this section we explain some of the ways an experimental biologist might use
the Pathway Logic knowledge bases and PLA in their research. We will focus on
the Pathway Logic model of response to Epidermal growth factor (Egf) stimu-
lation. This is an important model for the study of cancer and many other phe-
nomena as Epidermal growth factor receptor (EgfR) signaling regulates growth,
survival, proliferation, and differentiation in mammalian cells.

We use rewrite rules to express biochemical processes or reactions involving
single or multiple subcellular compartments. For example, consider a rule (Rule
757) that establishes: In the presence of PIP3, activated Pdk1 recruits PKCe
from the cytoplasm to the cell membrane and activates it. In Maude syntax, this
signaling process is described by the following rewrite rule:

rl[757.PIP3.Pdk1.act.PKCe]:

{CM | cm:Soup PIP3 [Pdk1 - act] {cyto:Soup PKCe}}

=>

{CM | cm:Soup PIP3 [Pdk1 - act] [PKCe-act] {cyto:Soup}}

[metadata "cite = 11964154"] .

A rule declaration may also contain additional information. The metadata at-
tribute allows rules to be annotated with arbitrary information that is ignored
by the core rewriting engine, but available for use by metalevel operations. In
the above rule, the metadata cite = "11964154" gives the unique identifier for
the MedLine database citation as justification for the rule [7].

To support reliable manual curation of the experimental literature, we are
developing a system [41], called datums, to collect, store, and retrieve curated
information so that it can be understood and shared by a community of experi-
mental biologists, and used to is developing models of cellular processes.

The queries layer specifies initial states (called dishes) to be studied. Initial
states are in silico Petri dishes containing a cell and ligands of interest. An initial
state is represented by a term of the form PD(out cell), where cell represents
a cell state and out represents a soup of ligands and other molecular components
in the cells surroundings. Our analysis begins with the initial dish state rasDish
defined by

eq rasDish = PD(Egf [HMEC | {CLo | empty }

{CLm | EgfR PIP2 } {CLi | [Hras - GDP] Src }

{CLc | Gab1 Grb2 Pi3k Plcg Sos1 }]) .

Figure 2 shows the Petri net representation of rasDish. Ovals are occurrences,
with initial occurrences darker. Rectangles are transitions. Two way dashed ar-
rows indicate an occurrence that is both input and output.
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IP3-CLc

Plcg-CLc

Fig. 2. RasDish as a Petri net using Pathway Logic.

Suppose we want to find out if a pathway (computation) leading to activation
of Hras (loaded with GTP) one can use the search command with a suitable
search pattern and parameters ([1] -- the first solution, =>+ at least

one step).

Maude> search [1] rasDish =>+

PD(out:Soup [HMEC | cyto:Soup {CLi | cli:Soup [Hras - GTP]}]) .

The solution to this query given by Maude is:

Solution 1 (state 15)

out:Soup --> empty

cyto:Soup --> {CLo |[Egf - bound]}

{CLm | PIP3 [EgfR - act]}

{CLc | Plcg}

cli:Soup --> Src[Gab1 - Yphos][Grb2 - reloc]

[Pi3k - act][Sos1 - reloc]

Then we can ask Maude for the rule labels:

Maude> show path labels 15 .

1.EgfR.act

5.Grb2.reloc
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4.Gab1.Yphosed

8.Pi3k.act

9.PIP3.from.PIP2.by.Pi3k

13.Sos1.reloc

6.Hras.act.1

Models of cellular response to many different stimuli, including a much more
complete model of Egf signaling, as well as a tutorial guide for using PLA to
query the models can be found at http://pl.csl.sri.com using the PLA On-
line menu.

6 Conclusions

Pathway Logic is a symbolic systems biology approach to modeling biological
processes based on rewriting logic. It provides many benefits, including the abil-
ity to build and analyze models with multiple levels of detail, represent general
rules, define new kinds of data and properties, and execute queries using log-
ical inference. We are interested in formalizing models that biologists can use
to think about signaling pathways and other processes in familiar terms while
allowing them to computationally ask questions about possible outcomes. We
have described the use of Pathway Logic to model signal transduction processes,
and the use of the Pathway Logic Assistant to browse and analyse these models.

Model validation is done both by experimental testing of predictions and
by using the analysis tools to check consistency with known results. Already
the Pathway Logic models are useful for clarifying and organizing experimental
data from the literature. The eventual goal is to reach a level of maturity that
supports prediction of new and possibly unexpected results.
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