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Abstract. Cardiovascular Magnetic Resonance Imaging (CMRI) has become a 
powerful popular non-invasive tool for detecting biomarkers of various types of 
subtle pediatric cardiomyopathies yielding BIG temporal, high-resolution data. 
The complexities associated with the annotation of images and extraction of 
markers, necessitate the development of efficient workflows to acquire, manage 
and transform this data into actionable knowledge for patient care. We develop 
and test a novel framework called CMRI-BED for biomarker extraction and 
discovery from pediatric cardiac MRI data involving the use of a suite of tools 
for image processing, marker extraction and predictive modeling. We applied 
the workflow to obtain and analyze a small dataset containing CMRI-derived 
biomarkers for classifying positive versus negative findings of cardiomyopathy 
in children. Preliminary results show the feasibility of our framework for pro-
cessing such data while also yielding actionable predictive classification rules 
that can augment knowledge conveyed in cardiac radiology outcome reports. 
 

Keywords: Cardiovascular MRI, Cardiomyopathy classification, Bayesian 
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1 Introduction 

Cardiovascular Magnetic Resonance Imaging (CMRI) is currently regarded as the 
gold standard for the non-invasive acquisition and processing of high-resolution tem-
poral images for heart tissue characterization. CMRI is routinely used clinically to 
discover sources of abnormalities in cardiac structure, function and dynamics. Its 
applicability to the detection and diagnosis of genetic cardiomyopathies, particularly 
in pediatric populations, is of immense significance for effective treatment options 
and follow-up care by the primary physician in consultation with cardiac radiologists 
and specialists.  The large amounts of CMRI data acquired per patient leads to several 
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complexities associated with the annotation of images and extraction of markers to 
differentiate the various subtle and rare forms of cardiomyopathies.  These complexi-
ties necessitate the development of efficient workflows to acquire, manage and trans-
form this data into actionable knowledge for patient care.   

Past work in this area has typically been in the image processing domain, wherein 
the effort has gone into imaging bio-marker extraction, segmentation of global and 
local regions of interest [1], extraction of quantitative metrics such as volume estima-
tion, morphological, functional or flow-based features [2, 3] and finally automated 
tools for multi-modal image registration. To our knowledge, the clinical workflows 
associated with the CMRI data acquisition and processing have not been studied from 
a machine learning perspective to identify areas of inefficiencies wherein intelligent 
computational tools could be developed to aid cardiac radiologists in the assessment 
of cardiomyopathies using a multitude of imaging biomarkers.  In this paper, we de-
velop and test a novel framework called CMRI-BED (Cardiovascular Magnetic Reso-
nance Imaging Biomarker Extraction and Discovery) that includes predictive model-
ing of retrospective CMRI data to extract classification rules that augment knowledge 
obtained from standard practice.  We present our preliminary findings from the appli-
cation of this workflow to a dataset containing positive and negative findings for a 
subset of pediatric patients evaluated for cardiomyopathies.  

2 Background 

Cardiovascular disease is the #1 leading cause of death worldwide [4]. Cardiomyopa-
thy (CM) generally refers to a diverse group of diseases of the heart muscle and are 
classified according to anatomy and physiology into the following types: Hyper-
trophic cardiomyopathy (HCM), Dilated cardiomyopathy (DCM), Arrhythmogenic 
right ventricular cardiomyopathy/dysplasia (ARVC/D), Restrictive cardiomyopathy 
(RCM) and unclassified cardiomyopathies (NCM). In 1996, a highly cited scientific 
statement from the American Heart Association (AHA) proposed contemporary defi-
nitions and classification of primary and secondary cardiomyopathies that took into 
account molecular genetics in cardiology [5].  A recent article thoroughly illustrates 
the various types of common and rare cardiomyopathies, and their classification based 
on specific morphological and functional phenotypes [6].   

CMRI has become a popular non-invasive technology for cardiomyopathy assess-
ment.  The basic protocols for cardiomyopathy assessment using CMRI are discussed 
and illustrated in [6]. A further discussion of assessment of rare cardiomyopathies 
using CMRI is presented in [7]. Standardized CMRI protocols are reviewed in [8]. 
CMRI has recently emerged as a powerful tool for detecting cardiovascular bi-
omarkers [9]. It is helpful in making a differential diagnosis between different types 
of cardiomyopathies [10-12]. In pediatric populations, genetic cardiomyopathies are 
of particular significance due to the need for timely intervention to prevent morbid 
outcomes.  

Table 1 depicts statistics on pediatric populations for genetic cardiomyopathies, 
which include HCM [13], DCM, ARVC/D, RCM (and iron mediated CM), NCM 
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[14], along with Tetralogy of Fallot(ToF) [15] that is a morphological congenital heart 
disease (CHD) associated with myopathy of the right ventricle. Some examples of 
CMRI-based quantitative and qualitative markers are also depicted. These biomarkers 
are representative of structure (morphology), function and dynamics (flow) of the 
heart muscle. 

Table 1. Incidence, prevelance and other statistics for the five cardiomyoapthies and a more 
prevalent pediatric CHD called ToF, with associated right ventricular abnormalities. Some 
examples of standard quantitative and qualitative markers from CMRI that are associated with 
observed normal (NL) or abnormal (ABNL) values in each disease based on patients seen at the 
Children’s Hospital of Pittsburgh (CHP) between 2000 and 2013.  LV refers to Left Ventricular 
and RV to Right Ventricular regions. 

CM Subtypes HCM 
 

DCM ARVC/D NCM RCM & Iron 
mediated 
CM 

ToF
15

 

Incidence (I) OR 

Prevalence (P) 

P = 1:500 in 
absence of 
aortic valve 
disease or 
systemic 
hypertension 

I = 5-8 
cases 
/100,000 
P = 36 
cases 
/100,000 

I = 1/ 
10,000 

I = 
0.05% 
to 
0.24% 

I = 11.4% to 
15.1% in  
Thalassemia 
major patients 
Transfusion 
Dependent 

I = 9/ 
1000 
live 
births 

#Patients evalu-

ated for CM    
46 129 44 31 35 684 

Total number of 

positive diagno-

sis w/ CMRI CM  

11 18 4 15 12 119 

CMRI-based QUANTITATIVE markers 

LV myocardial 

wall thickness 
ABNL ABNL NL ABNL ABNL NL 

LV mass index ABNL ABNL NL ABNL ABNL NL 

LV Volume index  ABNL ABNL NL ABNL ABNL ABNL 

RV Volume index NL ABNL ABNL NL ABNL ABNL 

CMRI-based QUALITATIVE markers 

Myocardial  

Delayed  

Enhancement 

+/- +/- +/- +/- +/- + 

Wall motion 

abnormalities 

+/- +/- +/- +/- +/- +/- 

 

Machine learning methods are now routinely applied to predictive modeling of dis-
ease states from high-dimensional biomedical data. Both linear and non-linear model-
ing methods are available for classification tasks, wherein a classifier is learned using 
training data containing possible predictors (e.g. biomarkers) of a target class (e.g. the 
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presence of absence of a disease). A particular method that has been applied success-
fully to ‘omic’ biomarker discovery is the Bayesian rule learning (BRL) [16] system, 
which uses a Bayesian score to construct Bayesian networks (BNs) and to learn prob-
abilistic rule models from them. The models produced are easily interpretable by the 
biomedical scientist and have been shown to have fewer markers and equivalent or 
greater classification performance in comparison to models derived from other rule 
learning methods [16, 17]. In this paper, we develop and apply a novel workflow that 
permits the application of BRL to CMRI-derived biomarkers for classification of 
positive versus negative findings of cardiomyopathy in pediatric patients. 

Fig. 1. Overview of the Cardiovascular Magnetic Resonance Imaging Biomarker Extraction 
and Discovery (CMRI-BED) framework. Standard clinical practice is depicted as dotted box. 

 

3 Methods 

Figure 1 depicts the CMRI-BED workflow which represents a simplified process 
description by which CMRI-derived biomarkers can be extracted and interactions 
among the biomarkers can be assessed using state-of-the-art predictive rule models to 
assist in the accurate classification of genetic cardiomyopathies in children. The pedi-
atric patient with a suspicion of cardiac disease based on presenting signs and symp-
toms is usually referred by the primary care physician (PCP) to consult with pediatric 
cardiology for basic initial clinical cardiac evaluation. Further evaluation for accurate 
diagnosis requires advanced cardiac MRI sequences as recommended by the experi-
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enced cardiac radiologist based on initial clinical findings, family history of patient 
and published literature and guidelines laid down by the Society for Pediatric Radiol-
ogy.  These sequences dictate the preparation of the patient, and subsequent image 
acquisition by the technician who works together with the radiologist and technology 
to capture the appropriate sets of images, ensuring their quality. Phantom runs are 
made with a body of water placed in lieu of the patient with the same parameter set-
tings to ensure that the values obtained by the technology are within acceptable rang-
es. 

Once the images are acquired, which takes approximately two hours depending on 
the CMRI protocol, they are post-processed by the cardiac radiologist, an appropriate-
ly trained physician who can evaluate the large sets of images and mark regions and 
contours for biomarker quantification. The radiologist also provides qualitative as-
sessments for several standard markers. Commercially available image processing 
software technology is used to assist the radiologist in performing these assessments, 
and is made available through the same vendor that makes the MRI scanning technol-
ogy. The commercially available software technology permits the generation of 
standard reports that contain quantitative and qualitative assessments of the CMRI-
based diagnosis, and these reports are sent to the referring pediatric cardiologist. 
Within the CMRI-BED, we propose to include our novel predictive modeling tools 
that can analyze retrospective data acquired for case/control discrimination from the 
hospital’s database for performing hypothesis driven retrospective and prospective 
clinical research studies (see Table 1 for availability of subjects for different CM 
types). We will generate classification rules that can inform the cardiac radiologist, 
referring pediatric cardiologist and the PCP about the kinds of interactions between 
different markers that can better discriminate CM types based on a training dataset, 
and we will also be able to give a diagnosis/prediction for a given patient.  

Using the proposed framework, we can extract both standard as well as novel 
CMRI biomarkers for diagnostic and prognostic purposes. An example of a novel 
regional imaging biomarker that was recently discovered based on our analysis of 
publicly available CMRIs within the Cardiac Atlas Project [18] databases is briefly 
discussed next. Cardiac MRIs of 25 symptomatic patients with coronary artery dis-
ease or left ventricle impairment and 25 asymptomatic patients were used to extract 
cardiovascular function metrics. This also led to the discovery of a new regional im-
aging biomarker of cardiac function that we call RMS-P2PD [19] which calculates 
the root mean square (RMS) error from average phase to phase regional left ventricu-
lar endocardial displacement, and is computed on a patient specific basis. The work-
flow depicted in Figure 1 is aimed to augment the efficiency and accuracy with which 
clinical radiologists detect and treat cardiovascular abnormalities in children. 

Below we give an illustrative example for proof-of-concept of this framework. 
This example uses available data which is fairly noisy and comprises a small dataset. 
It should be noted that such data are still not easily available in individual radiology 
clinics, which further motivates the potential of our framework to enhance scientific 
understanding of the process by which standard and novel CMRI biomarkers can be 
assessed for validity with respect to classification of pediatric genetic cardiomyopa-
thies. The framework can be used to assess whether or not certain types of CMRI 
biomarkers assessed using different technologies are suitable for classification of 
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pediatric cardiomyopathy, and if so, to what extent.  An example would be to assess 
the value of strain quantification measures from myocardial tagging sequence using 
CMRI to detect the presence or absence of regional morphological changes as an 
early marker of cardiomyopathy [14, 15] in patients referred for cardiac imaging tests. 
Strain quantification is an upcoming method for clinical evaluation of these patients.  

Dataset: Retrospective analysis was conducted on a set of 43 de-identified patients 
(22 males and 21 females) who were enrolled in a previous study [15] as described in 
the following subsection.  Of these, one female 4-month old patient identified with 
cardiomyopathy had outlier values, and was removed from our predictive modeling 
analysis of these data. This provided us with a total of 15 patients identified as Posi-
tive for cardiomyopathy and 27 patients with findings as Negative. The dataset con-
tained standard CMRI biomarkers along with gender, age and diagnosis. The original 
biomarkers are depicted in Table 2. It is to be noted that a few of the markers such as 
Fractional Shortening (FS), left and right ventricular ejection fractions, cardiac output 
and the indices are derived parameters.  

We constructed new variables based on the “normal” ranges for the left and right 

ventricular end-systolic and end-diastolic volumes and Stroke Volume parameters 
[20]. The body surface area (BSA) of each de-identified patient had to be re-derived 
from the indices in the dataset, and then, we used the clinical charts provided in [20] 
to determine whether a patient’s volumes are within a normal range given his/her 
BSA. Patients with volumes within the 95% confidence bands on each chart were 
labeled with the corresponding parameter values as “Normal”, while those outside 
this threshold were labeled as “Abnormal”. Using this method, we created 5 new dis-
crete variables LVEDV Range, LVESV Range, RVEDV Range, RVESV Range and 

Stroke Volume Range.  

 

Table 2. Standard CMRI biomarkers. 

Left Ventricle (LV)  
Parameters 

Right Ventricle (RV)  
Parameters 

Overall Cardiac  
Parameters 

A.S. Wall (cm) 
P.S. Wall (cm) 
End Diastolic Dimension (cm) 
End Systolic Dimension (cm) 
LV End Diastolic Vol (ml) 
LV End Systolic Vol (ml) 
LV Ejection Fraction (%) 
LV End Diastolic Index 
(ml/m2) 
LV End Systolic Index 
(ml/m2) 
Fractional Shortening (%) 

RV Major Axis (cm) 
RV Minor Axis (cm) 
RV End Diastolic Vol (ml) 
RV End Systolic Vol (ml) 
RV Major Axis Index (cm/m2) 
RV Minor Axis Index (cm/m2) 
RV Ejection Fraction (%) 
RV End Diastolic Index 
(ml/m2) 
RV End Systolic Index 
(ml/m2) 

Stroke Volume (ml) 
Stroke Volume Index 
(ml/m2) 
Heart Rate (bpm) 
Cardiac Output (l/min) 
Cardiac Index (l/min/m2) 
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Image Acquisition and Processing: A previously approved research study [15] 
had enrolled and selected patients by convenience sampling in the order that they 
sought clinically indicated CMRI’s at the Children’s Hospital of Pittsburgh (CHP). 
Inclusion criteria for the patient group included 0-18 years old, repaired ToF, and 
exclusion criteria included having undergone pulmonary valve replacement. Inclusion 
criteria for the control group included 0-18 years old and absence of cardiac disease. 
The control patients sampled underwent clinically indicated CMRI’s at the 
recommendation of their attending physicians due to concern for undiagnosed cardiac 
disease. Radiologists unaffiliated with that study analyzed the results from these 
CMRI’s and documented that these patients had normal cardiac function and 
morphology, with no evidence of cardiac disease. Additional patient records and test 
results were accessed for confirmation of these results. 

CMRI images were acquired with a GE SignaHDxt 1.5 Tesla MRI (GE Healthcare, 
WI, USA). Scans were performed by radiology technicians unaffiliated with this 
research project. Due to their young ages, 4 patients required general anesthesia 
during their MRI scans. A balanced steady state free precession sequence (FIESTA, 
GE) was used in the short axis to acquire images for biventricular volumetric analysis 
during 20 phases of the cardiac cycle. Relevant parameters included breath holds = 1-
2 (none for patients under general anesthesia), number of excitations = 1 for patients 
with breath holds and 2 for patients under general anesthesia, repetition time = 3.6-4.0 
ms, echo time = 1.5-1.7 ms, flip angle = 55°, slice thickness = 5-7 mm, and 
acquisition matrix = 256x256. Commercially available post-processing software 
ReportCARDTM (GE Healthcare, WI, USA) was used to determine volumetric data, 
flow and velocities.  

4 Results 

The CMRI-derived biomarkers (Table 2) dataset containing 15 positive cases and 
27 negative controls was analyzed using our novel Bayesian Rule Learning (BRL) 
methods [16, 21]. BRL [16] works by searching for interactions between predictors 

that are favorable for discriminating the target class values, which for this dataset are 

represented by positive or negative MR diagnosis. BRL performs a heuristic, iterative 

search of the entire space of possible models (constrained BNs) representing interac-

tions among potential predictors, and uses a Bayesian score to represent the uncertain-

ty in the validity of each model. The top one thousand models are stored in the order 

of their Bayesian score during each search iteration and used to grow the interaction 

terms up to a user-specified maximum (default is 8 predictors).  

We present below a BRL (Decision Tree) [21] model to illustrate the kinds of in-

teractions between CMRI-derived markers that can be used for automatic classifica-

tion. We used equal frequency binning (2 bins) available within BRL to discretize the 

input variables. We obtained a model from BRL that was developed by learning on 

the entire training data (15 positives, 27 negatives). This model (see rules below) was 

applied to the training data to make predictions, and fit the data with the following 

statistics – Accuracy = 83%, Sensitivity = 87% and Specificity = 82% for the Positive 
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class, and an Area under the ROC curve value = 91%. The model used 6 variables 

LVEF, CardiacIndex, LVESVRange, FS, RVSVRange, RVMajorAxisIndex (which 

are age and gender specific) as shown below:  

 

1. IF  (RVMajorAxisIndex ≤ 5.2) & (RVSVRange = Abnormal) & (LVEF ≤ 

60.6)  THEN (MRDx = Normal) 

 Posterior Probability=0.909, P=0.011, TP=9, FP=0 

 

2.  IF (RVMajorAxisIndex > 5.2) & (CardiacIndex ≤ 2.7) & (LVEF  > 60.6) 

THEN (MRDx = Normal) 

 Posterior Probability=0.889, P=0.033, TP=7, FP=0 

 

3. IF (RVMajorAxisIndex > 5.2) & (CardiacIndex ≤ 2.7) & (LVEF ≤ 60.6) & 

(FS  ≤ 32) THEN  (MRDx = Normal) 

 Posterior Probability=0.75, P=0.408, TP=2, FP=0 

 

4. IF (RVMajorAxisIndex ≤ 5.2) & (RVSVRange = Abnormal) & (LVEF > 

60.6) & (LVESVRange = Abnormal) THEN (MRDx = Normal) 

 Posterior Probability=0.625, P=0.639, TP=4, FP=2  

 

5. IF (RVMajorAxisIndex ≤ 5.2) & (RVSVRange = Normal) THEN (MRDx = 

Positive) 

 Posterior Probability=0.75, P=0.122, TP=2, FP=0 

 

6. IF (RVMajorAxisIndex ≤ 5.2) & (RVSVRange = Abnormal) & (LVEF > 

60.6) & (LVESVRange = Normal) THEN (MRDx = Positive) 

 Posterior Probability=0.667, P=0.357, TP=1, FP=0 

 

7. IF (RVMajorAxisIndex > 5.2) & (CardiacIndex ≤  2.7) & (LVEF ≤  60.6) & 

(FS > 32) THEN (MRDx = Positive) 

 Posterior Probability=0.667, P=0.357, TP=1, FP=0 

 

8. IF (RVMajorAxisIndex > 5.2) & (CardiacIndex > 2.7) THEN (MRDx = 

Positive) 

 Posterior Probability=0.625, P=0.009, TP=9, FP=5 

 

The posterior probability for each classification rule is calculated by BRL. In 
addition, the rules also contain a p-value (P) that is calculated for each rule using 
Fisher’s exact test. The number of true positives (TP) and false positives (FP) covered 
by each rule is also reported. We choose this model for purposes of illustration 
because we obtained at least a few general rules that are reasonable in terms of both 
accuracy and coverage as shown above. The above classification rule model is shown 
for illustrative purposes to depict how a parsimonious description of a complicated 
cardiac biomarker dataset can be obtained using our BRL methods. Access to a larger 
training dataset is clearly required along with independent test sets for validating 
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predictive models obtained from such CMRI data.  While BRL was able to find rules 

that are established and well-known in the literature [20], it must be noted that 

different discretization methods lead to different cutoffs for the input variables. This 

issue must be addressed in order to enable stable models to be learned from such 

CMRI datasets. 

5 Discussion 

CMRI cardiomyopathy data is an example of a type of BIG data that presents 
several informatics challenges. As seen in the results section, the collaborative efforts 
between cardiac radiologists, data miners, biomedical engineers, technicians and 
biomedical informaticians will be crucial to establish and maintain databases or 
electronic repositories that can be used to create knowledge for transforming patient 
care. Based on our experience in applying the CMRI-BED framework, we identify the 
following three immediate informatics challenges that require elegant state-of-the-art 
solutions: 

1. The need for a gold-standard, secure repository for storing the cardiac MR 
image sequence specific manually traced contours and image annotations 
performed on the entire sets of 2D, 3D and 4D images apart from the raw 
images acquired and stored in DICOM formats for each (de-identified) 
patient in clinical setting. Currently, these post-processed images are pushed 
to PACS for clinical reporting following the post-processing at the dedicated 
cardiac workstation at CHP. Image retrieval of post-processed images for 
clinical research is a cumbersome and deliberate time exhausting task which 
affects the clinical research flow.  

2. The need for adequately trained personnel to perform such annotations on 
existing CMR images. On an average, it takes at least 1 year to adequately 
train a technologist who has met prerequisites for performing clinical cardiac 
MRI procedure.  

3. The need for a series of systematic studies that can provide adequate age, 
gender and clinical history matched controls that are crucial for predictive 
modeling of CMRI data. 

Challenge #1 can be met by secure, cloud-based architectures that permit large data 
storage and acquisition. Filling the second need can enhance the productivity of 
cardiac radiologists. A single pediatric radiologist reads and annotates about 350 
cases in a year, because each case can take anywhere from four to eight hours to 
capture CMRI data and process it to generate and verify reports. Meeting challenge 
#3 will provide power to predictive modeling studies due to availability of matched 
case-controls in sufficient quantities to be able to better understand and differentiate 
cardiac diseases.  
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6 Conclusion 

Pediatric cardiomyopathies are significant diseases that are routinely examined us-
ing CMRI. Pediatric cardiomyopathies are a heterogeneous group of serious disorders 
of the myocardium and are responsible for significant morbidity and mortality among 
children if not timely diagnosed. In this paper, we develop and test a novel workflow 
called CMRI-BED for biomarker extraction and discovery from CMRI data. The 
novelty arises from the iterative involvement and use of unique, predictive tools such 
as BRL to model retrospectively available CMRI data and provide physicians with 
knowledge that relates biomarker interactions to outcome classification. Moreover, 
the workflow is flexible, scalable and largely independent of technology. Advances in 
CMRI technology can lead to the development of new biomarkers, which can be easi-
ly incorporated into our modeling framework. Retrospective data can be obtained 
from multiple institutions and summarization of these using BRL will help in drawing 
more general conclusions. Extensions to this workflow can be also made to allow for 
integration of image biomarkers from multiple platforms using variants of extant al-
gorithms for transfer learning of classification rules [22]. We believe that this CMRI-
BED workflow will help in the assessment of CMRI biomarkers in a timely fashion 
for improved diagnosis and prognosis of pediatric cardiomyopathies. 
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