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Abstract. Statistical analysis is used to analyze seven temporal series obtained from respira-
tory flow signals of 66 patients on weaning trials. In which, 33 patients belong to successful 
group (SG), and 33 patients belong to failure group (FG), i.e. failed to maintain spontaneous 
breathing during trial. Patients were then classified with a pattern recognition neural network, 
obtaining 78.78 % of accuracy in the classification. 

 
Index Terms.  Mechanical Ventilation, Mann–Whitney U test, Genetic Algorithm, Artificial 
Neural Networks. 

 

1 Introduction 

 

Mechanical ventilators are used to artificially ventilate the lungs of patients who are unable to 
naturally breathe from the atmosphere. There are two main divisions of mechanical ventilation: 
invasive ventilation and non-invasive ventilation. There are two main modes of mechanical 
ventilation within the two divisions: positive pressure ventilation, where air (or another gas 
mix) is pushed into the trachea, and negative pressure ventilation, where air is essentially 
sucked into the lungs [1]. 

Discontinuation of mechanical ventilation, also called weaning or extubation, should be per-
formed as soon as autonomous respiration can be sustained. It is one of the most challenging 
problems in intensive care units. Despite advances in mechanical ventilation and respiratory 
support, the science of determining if the patient is ready for extubation is still very imprecise. 
A failed weaning trial is discomforting for the patient and may induce significant cardiopulmo-
nary distress. When mechanical ventilation is discontinued, up to 25 percent of patients have 
respiratory distress severe enough to necessitate reinstitution of ventilatory support. Hence the 
need for a more accurate prediction of the optimal disconnection time, which is extended to the 
whole weaning process [2-3]. The variability of breathing pattern is not random and can be 
explained by central neural mechanisms or instability of the feedback loops [4]. This variability 
was analyzed previously in [5-8]. 

As in many real situations, the suitable variables that describe the problem are partially un-
known. When irrelevant variables are present, there may be many different models able to fit 
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the data. But only some of them (those that do not use irrelevant variables) will lead to good 
generalization performance on unseen examples. However, in general it is not possible to con-
trol that irrelevant variables are not used during the training phase to learn the training set. The 
Neural network is a technique capable of modeling this type of problem. 

The aim of this study is to analyze respiratory pattern variability in a specific process, the wean-
ing process, by applying neural networks, in order to find possible differences between patients 
who can maintain spontaneous breathing and patients who cannot. The input parameters to the 
neural network are determined by a genetic algorithm. This same problem has been worked on 
papers like [9], in which it used a neural network as classifier and backward selection for selec-
tion of inputs to neural network. In [10] it used a cluster analysis and neural network. In [11], 
applying a feature selection procedure based on the use of the support vector machine with a 
leave-one-out cross-validation. In [12], statistical analysis, power spectral density, and Lempel 
Ziv complexity, are used in a multi-parameter approach to analyze four temporal series ob-
tained from the Electrocardiographic and Respiratory Flow signals. In [13] each patient was 
characterized using 7 time series from respiratory signals, and for each serie was evaluated the 
discrete Wavelet transform; it trains a neural network for discriminating between patients from 
the two groups. 

 

2 Patients data 

 

In this study, respiratory flow signals were measured in 66 patients under mechanical ventila-
tion and extubation process (database WEANDB). The patients were recorded in the Depart-
ments of Intensive Care Units at Santa Creu i Sant Pau Hospital, Barcelona, Spain and Getafe 
Hospital,  Getafe, Spain, according to the protocols approved by the local ethics committees. 
The patients were submitted under T-tube test, disconnected from the ventilator and maintained 
spontaneous breathing through an endotraqueal tube during 30 min. According to the clinical 
criteria, the patients were classified into two groups: successful group (SG), 33 patients whose 
T-tube test was overcome successfully, and failure group (FG), 33 patients who failed the test 
and therefore could not be extubated.   

The respiratory flow was obtained with a pneumotachograph (Datex-Ohmeda monitor with 
variable reluctance transducer) connected to an endotracheal tube. The signals were recorded at 
a sampling frequency of 250 Hz during 30 minutes. The respiratory pattern can be characterized 
by the following time series: inspiratory time (  ), expiratory time (  ), breathing cycle dura-
tion (     , tidal volume (  ), inspiratory fraction (        ), mean inspiratory flow (     ) 
and rapid shallow breathing (    ), were   is respiratory rate. The figure 1 shows a respiratory 
signal and the respective parameters. 
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Fig. 1:  (a) Respiratory flow signal and their time series: inspiratory time (TI), expiratory time (TE) and 
breathing cycle duration (TTot). (b) Respiratory volume signal and tidal volume (VT). 

 

3 Methodology 

 

For each one of the time series was evaluated eight statistics data: arithmetic mean, standard 
deviation, mode, variance, median, interquartile range, kurtosis and skewness.  

- Arithmetic mean. It is the central tendency of a collection of numbers taken as the sum of the 
numbers divided by the size of the collection. 

- Standard deviation. It shows how much variation or dispersion exists from the average. A 
low standard deviation indicates that the data points tend to be very close to the mean; high 
standard deviation indicates that the data points are spread out over a large range of values. 

- The mode. It is the value that appears most often in a set of data. 

- The variance. It measures how far a set of numbers is spread out. A small variance indicates 
that the data points tend to be very close to the mean (expected value) and hence to each other, 
while a high variance indicates that the data points are very spread out from the mean and from 
each other. 

- The median. It is the numerical value separating the higher half of a data sample, a population, 
or a probability distribution, from the lower half. The median of a finite list of numbers can be 
found by arranging all the observations from lowest value to highest value and picking the mid-
dle one. 

- Interquartile range. It is equal to the difference between the upper and lower quartiles.  

- Kurtosis. It is a measure of whether the data are peaked or flat relative to a normal distribu-
tion. That is, data sets with high kurtosis tend to have a distinct peak near the mean, decline 
rather rapidly, and have heavy tails. Data sets with low kurtosis tend to have a flat top near the 
mean rather than a sharp peak. 
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- Skewness. It is a measure of the extent to which a probability distribution of a real-valued 
random variable leans to one side of the mean. For a unimodal distribution, negative skew indi-
cates that the tail on the left side of the probability density function is longer or fatter than the 
right side. Conversely, positive skew indicates that the tail on the right side is longer or fatter 
than the left side. In cases where one tail is long but the other tail is fat, skewness does not obey 
a simple rule. For example, a zero value indicates that the tails on both sides of the mean bal-
ance out, which is the case both for a symmetric distribution, and for asymmetric distributions 
where the asymmetries even out, such as one tail being long but thin, and the other being short 
but fat. 

 

3.1 The Mann–Whitney U test 

 

The Mann-Whitney U test is a non-parametric test that can be used in place of an unpaired t-
test. It is used to test the null hypothesis that two samples come from the same population (i.e. 
have the same median) or, alternatively, whether observations in one sample tend to be larger 
than observations in the other. Although it is a non-parametric test it does assume that the two 
distributions are similar in shape [14]. 

In order to reduce the problem dimensionality, a Mann Whitney Test was initially applied to 
eight statistics data computed in the seven time series, in order to identify the most significant 
variables. Test result, it was determined that the variables inspiratory time (  ), expiratory time 
(  ), tidal volume (  ), inspiratory fraction (        ) and rapid shallow breathing (    ), 
do not allow differentiation of patients between both SG and FG groups. Table I summarizes 
the p-values for each feature when compared both SG and FG groups of the variables breathing 
cycle duration (    ), mean inspiratory flow (     ) inspiratory fraction (        ); 11 pa-
rameters had a p-value less than 0.05. 

 

Table 1:  p-Value for each parameter of temporal series obtained from respiratory flow signals 

 

Feature 
Time Series 

TTOT TI/TTot VT/TI 

Arithmetic mean 0.0035 0.0138 0.0025 

Standard deviation x x x 

Mode 0.0170 0.0255 x 

Variance x x x 

Median 0.0028 0.0232 0.0032 

Interquartile range 0.0071 0.0383 0.0041 

Kurtosis x x x 

Skewness x x x 

x: p > 0.05 
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3.2 Genetic algorithm. 

 

Genetic Algorithms (GA) are direct, parallel, stochastic method for global search and optimiza-
tion, which imitates the evolution of the living beings, described by Charles Darwin.  GA is part 
of the group of Evolutionary Algorithms. The evolutionary algorithms use the three main prin-
ciples of the natural evolution: reproduction, natural selection and diversity of the species, 
maintained by the differences of each generation with the previous. GA works with a set of 
individuals, representing possible solutions of the task. The selection principle is applied by 
using a criterion, giving an evaluation for the individual with respect to the desired solution. 
The best-suited individuals create the next generation [15]. 

 

3.3 Artificial Neural networks  

 

Classification is one of the most frequently encountered decision making tasks of human activi-
ty. A classification problem occurs when an object needs to be assigned into a predefined group 
of class based on a number of observed attributes related to that object.  Traditional statistical 
classification procedures such as discriminant analysis are built on the Bayesian decision theo-
ry. In these procedures, an underlying probability model must be assumed in order to calculate 
the posterior probability upon which the classification decision is made. One major limitation of 
the statistical models is that they work well only when the underlying assumptions are satisfied. 
The effectiveness of these methods depends to a large extent on the various assumptions or 
conditions under which the models are developed. Users must have a good knowledge of both 
data properties and model capabilities before the models can be successfully applied. 

The artificial neural networks (ANN) have emerged as an important tool for classification. The 
recent vast research activities in neural classification have established that neural networks are a 
promising alternative to various conventional classification methods. The advantage of ANNs 
lies in the following theoretical aspects. First, ANN are data driven self-adaptive methods in 
that they can adjust themselves to the data without any explicit specification of functional or 
distributional form for the underlying model. Second, they are universal functional approxima-
tors in that ANN can approximate any function with arbitrary accuracy. Third, ANN are nonlin-
ear models, which make them flexible in modeling real world complex relationships. Finally, 
ANN are able to estimate the posterior probabilities, which provide the basis for establishing 
classification rule and performing statistical analysis [16]. 

 

3.4 Classification 

 

The 11 variables selected in Table 1 are the inputs of a ANN for its classification, the architec-
ture was a feed-forward with 11 inputs in the first layer, two hidden layers with hyperbolic tan-
gent sigmoid transfer function and one output layer of one neuron with hyperbolic tangent sig-
moid transfer function. Data from the SG group were labeled with a value of 1, and the FG 
group with a value of -1, for training. 

The number of neurons in the two hidden layers was determined for a GA. The algorithm gen-
erates two random integers, corresponding to the number of neurons the two hidden layers. The 
ANN was trained with Levenberg-Marquardt backpropagation method;          and      of Proceedings IWBBIO 2014.  Granada 7-9 April, 2014 793



  

data were used to train, to validate and to test, respectively. For each training, the following 
numbers were computed: the patients classified correctly, that is, who meet the condition to 
belong to SG or FG; and the patients who do not comply the condition. The ANN is trained ten 
times and the results are averaged. Classification rate is calculated as the number of patients 
classified correctly divided by the total number of patients; this is the value to optimize by the 
GA. The algorithms were implemented based on the neural network toolbox and the genetic 
algorithms toolbox of Matlab. The table II summarizes the configuration parameters of ANN 
and GA. 
 

Table 2:  Configuration parameters of ANN and GA 

Parameter Value 

Artificial Neural Network 

Maximum number of epochs to train     

Performance goal      

Minimum performance gradient      

Value initial of  learning rate      

Ratio to increase of learning rate     

Ratio to decrease of learning rate    

Value maximum of learning rate       

Genetic algorithm 

Generations    

Size of the population   

Type of  population Integer 

Elite population   

 

Executed the GA was determined that the number of neurons appropriate for the two hidden 
layers are 15 and 40 neurons, respectively; with these values the accuracy was                

  

3.5 Dimensionality reduction 

 

The term dimensionality reduction is applied to the task of selecting those features that are most 
useful to a particular classification problem from all those available. The main purpose of fea-
ture subset selection is to reduce the number of features used in classification while maintaining 
acceptable classification accuracy. Less discriminatory features are eliminated, leaving a subset 
of the original features which retains sufficient information to discriminate well among classes. 
For classical pattern recognition techniques, the patterns are generally represented as a vector of 
feature values. The selection of features can have a considerable impact on the effectiveness of 
the resulting classification algorithm. Consider a feature set, information to discriminate well 
among classes,    {          }. If    and    are dependent, that is they always move together, Proceedings IWBBIO 2014.  Granada 7-9 April, 2014 794



  

then one of these could be discarded and the classifier has no less information to work with. 
This has the benefit that computational complexity is reduced as there is smaller number of 
inputs. Often, a secondary benefit found is that the accuracy of the classifier increases. This 
implies that the removed features were not adding any useful information but they were also 
actively hindering the recognition process. Feature selection can be seen as a case of feature 
weighting, where the numerical weights for each of the features have been replaced by binary 
values. A value of   could mean the inclusion of the corresponding feature into the subset, 
while a value of   could mean its absence. In a domain where objects are described by   fea-
tures, there are    possible feature subsets. Obviously, searching exhaustively for the best sub-
set (using any criteria to measure the quality) is difficult. For this reason, the GA has been iden-
tified as the best tools to explore such search space, and produce pseudo-optimal solutions that 
are sufficient to produce acceptable results [17-18]. The features selection using GA has been 
studied and proven effective in conjunction with various classifiers, including k-nearest-
neighbours, and neural networks [19-20]. 

With the aim to increase the accuracy of the classifier was programmed a GA to select the in-
puts of ANN.  The ANN architecture was a feed-forward with N inputs in the first layer, two 
hidden layers with hyperbolic tangent sigmoid transfer function with 15 and 40 neurons, respec-
tively, and one output layer with hyperbolic tangent sigmoid transfer function (1 neuron).  The 
GA generates a 11-bits binary code, in which a value of one indicates that one of eleven charac-
teristics, defined in Table I, is selected as input to the ANN. The ANN is trained 10 times and 
the end of each training is calculated the classification rate, defined as the number of patients 
classified correctly divided by the total number of patients; this is the value to optimize by the 
GA. The configuration parameters for the NN are the same of Table II; the Table III summariz-
es the configuration parameters of GA. 

 

Table 3:.  Configuration parameters of ga 

 

Parameter Value 

Generations    

Size of the population    

Type of  population Bit string 

Elite Population   

Selection Function Roulette 

Crossover Function Scattered 

Mutation function Uniform 

Crossover rate     

Mutation rate 0.01 

 

Executed GA was determined that the most relevant variables for the system are arithmetic 
mean TTOT, mode TI/TTOT, median TI/TTOT and interquartile range VT/TI; with accuracy of 
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             . The figure 2 showed the behavior of the data of the two groups with respect 
to the mean value for the four variables. 

 

 
Fig. 2: Selected parameters for GA (33 SG, 33 FG). Mean values for each group are marked with lines. 

 

4 Conclusion 

 

A methodology based on GA and ANN has been applied for determine the moment of discon-
nection of patients of the mechanical ventilation, analyzing the respiratory pattern. GA are a 
good technique to reduce dimensionality in classification problems, improvement in 8% the 
accuracy.  

Four variables for successful outcomes from mechanical ventilation have been identified, 
arithmetic mean TTOT, mode TI/TTOT, median TI/TTOT and interquartile range VT/TI, but 
there are not specific and reproducible criteria clearly established of the relationship of these 
variables with the process of weaning.  
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