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Abstract. On-body activity recognition systems are becoming more
and more frequent in people’s lives. These systems normally register body
motion signals through small sensors that are placed on the user. To per-
form the activity detection the signals must be adequately partitioned,
however no clear consensus exists on how this should be done. More
specifically, considered the sliding window technique the most widely
used approach for segmentation, it is unclear which window size must be
applied. This paper investigates the effects of the windowing procedure
on the activity recognition process. To that end, diverse recognition sys-
tems are tested for several window sizes also including the figures used
in previous works. From the study it may be concluded that reduced
window sizes lead to a better recognition of the activities, which goes
against the generalized idea of using long data windows.
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1 Introduction

Human behavior inference has been widely explored during the last years. Peo-
ple activity inference or recognition is normally performed through the analysis
of the body motion, for which inertial sensors placed on limbs and trunk are
particularly used. Despite activity recognition has been traditionally restricted
to the scope of research and in-lab experiments, an strong effort is being put to
commercially leverage all the knowledge gained so far. In fact, several new gad-
gets and systems are released day-by-day and put at the reach of most people.
Their applications, mostly dedicated to specific wellness domains, range from
assessment of training routines [1], calculation of energy expenditure [7, 11] or
evaluation of dietary habits [12]. Yet, these systems are far from being robust
and accurate enough for a lifelong and extensive use.
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For the sake of recognition, the signals registered through the on-body sensors
are processed. One of the most important stages of this processing is data seg-
mentation. Although diverse segmentation approaches has been proposed in the
past, the most extensively used for its implementational simplicity and potential
use in real-time applications is the sliding window method. Here the signals are
split in windows of a fixed size and with no inter-window gaps. An overlapping
between adjacent windows is tolerated for certain applications, however this is
less frequently used. A range of window sizes have been used in previous studies
from 0.1 seconds [20] to 12.8 seconds [15] or more [25], with some studies includ-
ing a degree of overlap between windows [6, 21, 16]. In most cases, these values
are randomly selected and employed without considering the special needs of
systems for a realistic setting. Actually, depending on the addressed problem
a fast identification may be needed (e.g., fall detection) or conversely not have
special time requirements (e.g., kilometers walked in a day). Since reducing the
recognition time (i.e., segmentation) may have an influence on the system per-
formance, a tradeoff between detection time and accuracy should be considered
by recognition system designers. Despite the importance of this, little work has
been devoted to investigate this fact.

In this work we present an extensive study of the effects of segmentation
for diverse recognition techniques and activities. The performance of several
recognition systems is evaluated for an extensive set of window sizes that also
covers the values used in previous works. This characterization is defined for a
wide variety of representative activities. The rest of the paper is structured as
follows. In Section 2 the activity recognition methodology used in this study is
described. Section 3 presents the results obtained for the different experiments
while these are discussed in Section 4. Final conclusions and future work are
shown in Section 5.

2 Activity Recognition Methods

Signal segmentation is one of the stages of the activity recognition process, also
known as activity recognition chain. For on-body inertial sensing, raw unpro-
cessed signals (normally acceleration) are collected through a set of sensors at-
tached to the subject’s body. Electronic noise or other kind of artifacts may
disturb the measurements, thus sometimes a filtering process is applied [19]. Nev-
ertheless, this is not always used since it may imply a certain information loss.
In order to capture the dynamics of the signals these are divided into portions
of data (i.e., segmentation). Then, a feature extraction process is performed to
provide a handler representation of the signals for the pattern recognition stage.
A wide range of heuristics [17], time/frequency domain [18] and other sophisti-
cated mathematical and statistic functions [3] are commonly used. The feature
vector is provided as input of a classifier or reasoner, which eventually provides
the recognized activity. For multisensor configurations, decision aggregation or
fusion could be also applied [4].
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3 Results

3.1 Experimental setup

One of the most complete available activity recognition datasets [2] is here used
for evaluating the effects of signal segmentation. This dataset comprises motion
data recorded for 17 volunteers while performing 33 fitness activities. A set of
nine inertial sensors attached to different parts of their bodies was used for
the motion records. The potential of this dataset stems from the number of
considered activities, diversity of body parts involved, as well as the variety in
intensity and dynamicity of the actions. The use of multiple sensors permits
to measure the motion (namely, acceleration, rate of turn and magnetic field
orientation) experienced by each body limb and trunk, thus better capturing the
body dynamics. From all recorded inertial magnitudes here only the acceleration
data is considered since this demonstrates as the most prevalent sensor modality
in previous activity recognition contributions. All the recordings were collected
in an out-of-lab environment with no constraints on the way the activities must
be executed.

The implemented recognition methods (Section 2) are now described. No
preprocessing of the data is applied to avoid the removal of relevant informa-
tion. This is normal practice when the activities are diverse. The segmentation
process basically consists in a non-overlapping sliding window approach. Differ-
ent window sizes are used for evaluation, concretely ranging from 0.25s to 7s
in steps of 0.25s. This interval comprises most of the values used in previous
activity recognition systems. Three feature sets (FS) are respectively used for
evaluation: FS1=’mean’, FS2=’mean and standard deviation’ and FS3=’mean,
standard deviation, maximum, minimum and mean crossing rate’. These are
features widely used in activity recognition [22, 10, 13] for their discrimination
potential and ease of interpretation in the acceleration domain. Likewise, four
of the most extensively and successfully machine learning techniques used in
previous activity recognition problems are considered for classification: C4.5 de-
cision trees (DT, [9]), k-nearest neighbors (KNN, [8]), naive Bayes (NB, [26])
and nearest centroid classifier (NCC, [14]). The k-value for the KNN model is
particularly set to three. The evaluation of the activity recognition models is
performed through a ten-fold random-partitioning cross validation process ap-
plied across all subjects and activities. The process is repeated 100 times for each
method to ensure statistical robustness. To avoid data imbalancement artifacts,
the F -score or F1-score metric [24] is used to evaluate the performance of the
recognition systems.

3.2 Window size evaluation

Figure 1 depicts the performance results obtained for each recognition method
and for diverse window sizes. Similar tendencies are found for the performance
of each individual classification technique for all feature sets. This determines
that these results could be in principle generalized to other recognition models of
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similar nature. Systems based on FS3 (richest feature set of considered) provide
better performance than for FS2, which also improve the results obtained for
FS1.

The window size has a different performance impact for each classification
paradigm. The performance of NB and NCC models increases as the size of the
window grows. A minimum performance is obtained for 0.25s, which nevertheless
increases up to 30% when the window is enlarged to 1 second. Actually, a ’cut-off’
window size is found at 1 second for all feature sets. From that value on no sig-
nificant benefits are obtained in general. For NB-FS1, less than 5% improvement
is achieved for some random window sizes when compared to the performance
at 1 second. This also applies to a lesser extent for the NB-FS2 model. Con-
versely, increasing the window size more than 2 seconds entails a worsening of
the recognition performance for NCC-FS3. DT shows a top performance for win-
dow sizes between 1 and 2 seconds. Upper and lower values to these generally
decrease the performance of the recognizer. The KNN model outstands among
evaluated and allows us to maximally reduce the window size. This technique
provides the highest performance, with an F1-score above 0.95 for the simplest
realization (FS1) and close to 1 for FS2 and FS3, all for minimum window sizes
(0.25s-0.5s). For window sizes higher than 2 seconds for FS1 and FS3, and 3
seconds for FS2, the performance of the KNN systems decreases monotonically.
The lowest performance is achieved for a window size of 7 seconds, which for
some cases is up to 15% less than the baseline.
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Fig. 1. Data window size effects on the activity recognition systems performance (F1-
score). Twelve recognition systems respectively corresponding to the combination of
three feature sets (FS1, FS2, FS3) and four classification models (DT, NB, NCC, KNN)
are evaluated.
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4 Discussion

From the results obtained in Section 3.2 the interval 1-2 seconds demonstrates
as the most reliable windowing range for DT and KNN models. Actually, KNN
also provides very accurate recognition for minimum window size values (i.e.,
0.25s-0.5s). NB and NCC methods, which provide the worst performance from
evaluated, may benefit from adding more data for some sparse cases, however
this may also lead to a performance drop. In this regard, the obtained results help
reject the generalized idea of considering that the more data used for the feature
extraction the most accurate the recognizer is. The diversity among activities
determine this is just restricted to those of long duration or complex description,
however many others benefit from shorter window sizes.

The results provided along with this work could be used as support tool for
the design of activity recognition systems. When designing an activity recogni-
tion system, the expert may need to prioritize detection performance or speed,
or even both. In most cases, a trade-off between both elements is required. As
demonstrated in this study, in many cases a negligible reduction on the systems
performance allow us to significantly shorten the window size. Systems that may
benefit from rapid detections could not do it if a random window size is used.
Moreover, other activities are better recognized for shorter window sizes. There-
fore, the intuitive use of large windows could go in practice against the idea of
optimizing the recognition capabilities.

Yet, there are some challenges and limitations that must be bore in mind
for study. The presented results has been provided just for acceleration data,
however current tendencies show that the use of other sensing modalities could
help to improve recognition performance and systems robustness. Gyroscopes
and magnetometers are more and more frequently used in combination with ac-
celerometers for recognition purposes. Although accelerometers has been demon-
strated to suffice, an analysis with these other modalities could be of interest.
Moreover, a similar study to this could be also valuable for other activity recog-
nition domains, such as for computer vision or ambient intelligence.

According to the considered recognition setup, to monitor several body parts
multisensor configurations are required. Therefore, the results presented here are
of limited application to those systems that rely on a very reduced set of sensors
or even a unique device. Nevertheless, latest contributions show that ensuring
robustness and guaranteeing a reasonable recognition rate demands a complete
monitoring of the body as much as the number of target activities and their
diversity increases [5, 23]. Thereby, we consider this study perfectly suits with
current and specially future trends.

5 Conclusion

Signal segmentation is one of the main stages in the activity recognition chain.
This process consists in the partitioning of the sensor data stream into smaller
segments or windows. Most recognition systems use random window size values,
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however this may not optimally apply to the particular considered problem.
Thus, a study that analyzes this is lacking.

This work presents an extensive study that analyzes the effects of the win-
dowing process on the recognition systems performance. Several methodologies
extensively used in previous works are considered for evaluation. From the re-
sults, short windows (2 seconds or less) demonstrate to provide the most accurate
detection performance. In fact, the most precise recognizer is obtained for very
short windows (0.25 - 0.5 seconds), thus proving that large window sizes not
necessarily translates into a better recognition performance.

Systems configuration and design tasks may benefit from the figures provided
as part of this work. Next steps include to extend the scope of this study to other
activity recognition domains and technologies.
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