
Ultrasonic monitoring of artificial tissue
mechanical properties in biorreactor

Guillermo Rus, Nicolas Bochud, Juan Melchor, Laura Peralta,
Juan Chiachio, Manuel Chiachio, Antonio Gómez, and Juan Antonio Marchal

Dpt. Structural Mechanics, University of Granada, 18071 Granada, Spain.
{grus,nbochud,jmelchor,lperalta,jchiachio,mchiachio}@ugr.es

http://www.ugr.es/~grus

Abstract. Quantitative control of tissue processes in bioreactors is an
open problem in tissue engineering, aimed at creating artificial tissues
and organs. To standardize and optimize the process, it is necessary to
control most of the parameters that may vary its effectiveness. We pro-
pose to monitor the changes that may suffer the matrix during the pro-
cess using mechanical parameters. To ensure the viability of this proto-
col, a bioreactor has been designed. The proposed methodology consists
of three elements: an (1) experimental setup based on ultrasound-tissue
interactions monitored in real-time, a (2) computational model that sim-
ulates the ultrasound-tissue interactions, and a (3) model-based inverse
problem to reconstruct the evolution of the mechanical parameters.

1 Introduction

The rational principles of continuum mechanics are proposed together with a for-
mal probabilistic formulation to address the problem of characterizing mechani-
cal properties of tissue samples based on noninvasive and non-ionizing ultrasonic
measurements.

Some researchers are recently investigating the acoustic (elastic) properties of
cells and soft tissue at the microscale, and envisaging the potential of ultrasound
as a technique to provide real-time online assessments for non-destructive tis-
sue characterization. Brand et al. [1] explored changes in the acoustic properties
of cells when exposed to chemotherapy for monitoring treatment response, us-
ing high-frequency ultrasound spectroscopy and scanning acoustic microscopy.
Hattori et al. [2] developed a novel system for evaluating articular cartilage,
measuring the acoustic properties of the articular cartilage by introducing an ul-
trasonic probe into the knee joint under arthroscopy, which successfully predicts
the histological findings of degenerated cartilage. Rice et al. [3] used ultrasound
data to construct cross-sectional B-scan images for qualitative observations of
evolving constructs used in tissue engineering.

It is known that dispersive and viscous properties of tissue are strongly sen-
sitive to tissue changes and easily unveil deeper dimensions of its micro and
macrostructure. Static or slow viscoelastic mechanical constitutive laws and their
values were reported by Bader et al. for skin [4], and by Ahuja for various internal
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tissues [5]. At audible frequency dynamics, a linear viscoelastic model was pro-
posed by Pereira et al. [6] to fit the experimental observations. There are many
types of uncertainty involved in the modeling of interaction between ultrasonic
waves and tissue, such as excitation, material viscosity, and material heterogene-
ity. In this paper, multiple models of ultrasound-tissue interaction are proposed,
implemented and contrasted against experimental observations. All assume ho-
mogeneous media with varying moduli and energy-dissipation forms that are
expressed as attenuation models.

To provide a rational basis on the model choice, model-class selection algo-
rithms have attracted substantial interest for selecting the most plausible class
of models among some specified model classes, based on system measurements.
Some recent developments and civil engineering applications of Bayesian model
class selection have been carefully reviewed by Yuen [7]. A probabilistic model
reconstruction inverse problem is proposed based on the concept of joint prob-
ability of prior information about observation and probabilistic information in-
troduced by the model between model parameters and observations, as put forth
by Tarantola et al. [8]. The model-class selection is formulated following Beck
et al. [9]. Finally, a simple formulation of the joint probability is proposed, from
which either the inverse problem or the model-class selection can be derived just
by extracting specific marginal probabilities, thus unifying all the approaches.

2 Methodology

The proposed methodology consists of four elements: An novel (1) experimental
setup based on ultrasound-tissue interactions is monitored in real time, a (2) set
of alternative models that simulate the ultrasound-tissue interaction is numeri-
cally solved by the transfer matrix formalism, and a (3) stochastic model-class
selection formulation is used to rank which of the models are more plausible, and
(4) to reconstruct the evolution of the relevant mechanical parameters during
the culture reaction time.

2.1 Experimental setup

A biorreactor with a specifically designed 1 [MHz] ultrasonic transmitter and
receiver in transmission setup was manufactured for real-time measurement of
mechanical and geometrical properties of porous scaffold layers of tissue culture.
The monitoring scaffold dish is connected to the electronic setup detailed in
Fig 1.

The scaffold consists in a 3D-printed porous structure of polylactic acid bio-
compatible with a volume fraction of 0.67. Human chondrocyte cells were culti-
vated in standard incubator conditions.

2.2 Propagation and numerical models

The experimental system is idealized by a mathematical model of the propaga-
tion and interaction of the transmitted ultrasonic waves with all the parts of
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Figure 1. Schematic experimental and electronic setup.

the system until they are received by the sensor. The relevant ultrasonic paths
along the biorreactor material (PMMA, polymetylmetacrilate) and the scaffold
culture are illustrated in Fig 1. The bulk modulus K of all traversed materials
is related to Young’s modulus E and compressional waves speed cp.

Several models are tested to idealize the removal of energy by dissipation
or radiation. Three alternative damping models are used, viscous, hysteretic,
proportional to integer time derivatives of the particle movement, and based on
their fractional time derivatives. The viscoelastic dvis, hysteretic dhys (left) and
fractional time derivative damping (right) are defined by [11, 12],

M∗(ω) =M0
(
1− iωdvis − idhys

)
M∗(ω) =M0 1 + b(iω)β

1 + a(iω)α
(1)

The mathematical model described above is approximated by a semi-analytical
model of the wave interactions within multilayered materials based on the trans-
fer matrix formalism (TMF) [13] (see [14]).

2.3 Probabilistic inverse problem

Following the probabilistic formulation of the model reconstruction inverse prob-
lem established by Tarantola et al. [8], the solution is not a single-valued set of
model parameters M. On the contrary, the solution is provided by probability
density functions (PDF) p(M) of the values of the model parametersM within
the manifold M of possible values. The probability density is assigned the sense
of plausibility of the model values to be true.

Statistical inference theory is used to incorporate to the a priori information
about the measured observations O, the model parameters M and the model
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class C, the information of idealized relationship between them O = O(M) com-
puted by a numerical model pertaining to a model class C. The former are defined
by the probability densities to prior (labeled 0) data p0(O), p0(M) and p0(C)
respectively, whereas the additional information about relationship (labeled m)
between observations and model provided by the model class C is given by the
PDF pm(O,M|C). The a posteriori probability p(O,M, C) of the hypothetical
modelM is obtained jointly with the observations O and class C,

p(O,M, C) = k1
p0(O,M, C)pm(O,M, C)

µ(O,M, C)
(2)

where µ(O,M, C) is the noninformative density function and k1 is a normal-
ization constant. The probabilistic model definition is given by its probability
density function, which, after a number of assumptions regarding independency
of processes and uniformity of prior information, is obtained by the marginal
probability,

p(M)
∣∣
C=Ci

= k3

∫
O

p0(O)pm(O|M, C)dO (3)

where k3 is a normalization constant that replaces the dropped uniform distri-
butions, and is needed for p(M)

∣∣
C=Ci

to fulfill the theorem of total probability.
The goal is to find the probability p(C), understood as a measure of plausi-

bility of a model class C [15]. It can be derived as the marginal probability of
the posterior probability p(O,M, C),

p(C) =
∫
O

∫
M

p(O,M, C)dMdO = (4)

= k1p
0(C)

∫
O

∫
M

p0(O)p0(M)pm(O|M, C)
µ(O)

dMdO (5)

2.4 Evolution search algorithms

The minimization of p̃(M) for monitoring the evolution of the culture is car-
ried out by two sequential algorithms: When an initial guess is not available,
genetic algorithms are used as a full-range random search technique [16]. Since
the change between consecutive measurements of the process is expected to be
small, the BFGS-algorithm is employed thereon as a local search based on Hes-
sian update [17], assisted by finite differentiation and line search.

3 Results

A sample of signals recorded by the ultrasound-monitored petri dish, without
and with specimen respectively, every 60 seconds is shown in Fig 2. No clear
evolution is detectable by bare visual inspection of the signals.

The estimation of Occam’s factor, as well as the certainty metric σ are sum-
marized in Table 1. The most plausible model class is shown to be 2, involving
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Figure 2. Left: Signal sample: Sequence of signals with specimen every 60 seconds.
Right: Example of map of probabilistic inverse problem solution: plausibility value for
each set of mechanical properties.

Model class Hysteretic Viscous Fractional time derivative

p(C) [%] 37.42 43.72 18.86

Certainty [log10] 2.22 1.66 1.82

Model size 2 2 4
Table 1. Plausibility of model classes.

Ktissue, viscoelastic damping and temperature correction. It is closely followed
by classes 1 (hysteretic). The evolution of the relevant reconstructed mechan-
ical parameters during the reaction process is shown in Fig. 3 for two of the
aforementioned model classes.

4 Conclusions

A computational technique to determine in real time the energy release and other
mechanical parameters noninvasively during tissue growth ir presented by com-
bining the solution of a probabilistic inverse problem, applying genetic search
algorithms, and using a semi-analytical model of the interaction between ultra-
sonic waves and tissue. The proposed model-class selection and its subjacent
class plausibility have enabled to rank the models according to their compatibil-
ity with the observations. The resulting trade-off between model simplicity and
fitting to observations demonstrates that the viscous and hysteretic damping
models, combined with the excitation signal correction, are feasible to charac-
terize the complex evolution of the reaction process.

Acknowledgments. Spanish Ministerio de Economia for project DPI2010-
17065, Spanish Junta de Andalucia for projects P11ŋCTS-8089 and GGI3000IDIB,
and the European Union for program ’Programa Operativo FEDER de An-
dalucía 2007-2013’.

Proceedings IWBBIO 2014.  Granada 7-9 April, 2014 81



6 Ultrasonic monitoring of artificial tissue mechanical properties in biorreactor

0 2 4 6 8 10 12 14 16 18 20
−6

−4

−2

0

2

4

6

8

10

12

Reaction time,  t [h]

E
v
o
lu

ti
o
n
 [
%

]

 

 

Scaffold velocity,  c [m/s] = 1700
Scaffold attenuation,  d = 2.041e+06

0 2 4 6 8 10 12 14 16 18 20
−15

−10

−5

0

5

10

15

20

25

30

35

Reaction time,  t [h]

E
v
o
lu

ti
o
n
 [
%

]

 

 

Scaffold velocity,  c [m/s] = 1689
Scaffold attenuation,  d = 1.026e+06

Figure 3. Evolution of model parameters during reaction. Viscoelastic (left) and Hys-
tertic damping model (right).
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