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Abstract. Regulatory sequence detection is a fundamental challenge in compu-
tational biology. The transcription process in protein synthesis starts with the 
binding of the transcription factor (TF) to its binding site. These binding sites 
are short DNA segments that are called motifs. Different sites can bind to the 
same factor. This variability in binding sequences besides their low information 
content and low specificity increases the difficulty of their detection using com-
putational algorithms. This paper proposes a novel algorithm for transcription 
factor binding sites (TFBSs) detection in the entire genomic structure and allow 
discovery of new motif sequences. This is achieved by using distance metrics 
based on a position frequency matrix	(PFM) concept that quantify the similitude 
between the set of conserved sequences belonging to a particular TF and the en-
tire DNA sequence under study. Hence, the PFM in this context can be thought 
of as a consensus sequence as it provides a representative measure of the said 
set of binding sites belonging to a particular TF. The algorithm then quantifies 
the correlation between the PFM and each binding site belonging to a given TF. 
Same scenario is then applied to the genome sequence under study. The ob-
tained distance metrics are then utilized to discover new potential TFBSs based 
on their similitude of the set of binding sites investigated. Analysis is applied to 
Escherichia coli (E. coli) bacterial genomes. Simulation results verify the cor-
rectness and the biological relevance of the proposed algorithm. 

Keywords: Transcription Factor Binding Site, Position Frequency Matrix, 
Consensus Sequence, Motif Discovery 

1 Introduction 

In bioinformatics, one can distinguish between two separate problems regarding DNA 
binding sites: searching for additional members of a known DNA binding motif (the 
site search problem) and discovering novel DNA binding motifs in collections of 
functionally related sequences (the sequence motif discovery problem) [1, 2]. Many 
different methods have been proposed to search for binding sites. Most of them rely 
on the principles of information theory and have available web servers [3, 4], while 
other authors have resorted to machine learning methods, such as artificial neural 
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networks [5-7]. A plethora of algorithms is also available for sequence motif discov-
ery [8, 9]. These methods rely on the hypothesis that a set of sequences share a bind-
ing motif for functional reasons. Binding motif discovery methods can be divided 
roughly into enumerative, deterministic and stochastic [10]. MEME [11] and 
CONSENSUS [12] are classical examples of deterministic optimization, while the 
Gibbs sampler [13] is the conventional implementation of a purely stochastic method 
for DNA binding motif discovery. While enumerative methods often resort to regular 
expression representation of binding sites. Recent advances in sequencing have led to 
the introduction of comparative genomics approaches to DNA binding motif discov-
ery, as exemplified by PhyloGibbs [14]. More complex methods for binding site 
search and motif discovery rely on the base stacking and other interactions between 
DNA bases. An example of such tool is the ULPB [15]. 

Unraveling the mechanisms that regulate gene expression is a major challenge in 
biology. An important task in this challenge is to identify regulatory elements, espe-
cially the binding sites in deoxyribonucleic acid (DNA) for transcription factors. 
These binding sites are short DNA segments that are called motifs. As differ-
ent sites can bind to the same factor, this increases the difficulty of 
their detection using computational algorithms. Although traditional footprinting as-
says can accurately identify the precise binding sites of any factor, this low-
throughput method is highly technical and can analyze only a single small region (< 1 
kb) at a time. With the development of high-throughput sequencing technologies, a 
number of experimental techniques such as ChIP-chip and ChIP-seq have been used 
to identify the location of transcription factor binding sites. However, these methods 
are unable to resolve DNA-protein interactions at base pair resolution [16]. In sili-
co identification of over-represented DNA motifs from the promoters of co-regulated 
or homologous genes as well as ChIP-enriched regions plays a significant role in lo-
cating binding sites in a high-throughput and high-resolution manner. This paper pro-
poses a novel algorithm for detecting transcription factor binding sites in the entire 
genomic structure by using distance metrics based on a position frequency matrix 
(PFM) concept. The algorithm does not use any mapping for the four known nucleo-
bases (A, T, C and G) unlike a previous work [1] where polyphase mapping was used 
to represent the four nucleobases. Not only can the proposed algorithms be used to 
investigate the detection problem of transcription factor binding sites, but also can 
help examine the distribution of regulatory sequences in coding and non-coding re-
gions. This later knowledge can then be utilized in the gene identification problem. 
Moreover, the proposed algorithm allows discovering new potential motif sequences 
that need to be subjected to further biological analyses to verify their significance. 

The rest of the paper is organized as follows: Section 2 presents a mathematical de-
scription of the proposed algorithm. It also summarizes the list of steps that describe 
how the algorithm works. Section 3 presents the analysis and simulation results of 
applying the proposed algorithm to two different Escherichia coli bacterial genomes. 
Subsection 3.1 describes how the proposed algorithm can be utilized in the discovery 
of new motif sequences based on their similitude to the known TFBSs. Finally, con-
clusions are drawn in Section 4. 
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2 Proposed Algorithm 

Figures 1 and 2 show a schematic system-like representation of the proposed algo-
rithm. The input parameters to the algorithm are the genome under study G�×� (L is 
the length of the genome in nucleobases) and the set of binding site sequences belong-
ing to a particular transcription factor represented by the matrix X�×�. The distance 
metric vector A�×� is assigned to the set of conserved binding sites belonging to the 
same transcription factor with a length equal to the number of binding sites (N), while 	B�×(�����) is another distance metric vector assigned to set of sequences in the ge-
nome with a length similar to the conserved sequence length (M). The output of the 
algorithm is a distance vector 	E�×� that corresponds to the locations of actual binding 
sites investigated. 

 
 
 

 

 

Fig. 1. TFBS Detection Algorithm (part 1) 

 
 
 
 
 
 
 

Fig. 2. TFBS Detection Algorithm (part 2) 

2.1 Mathematical Description  

The genome under study is given by  

G�×� = �g�, g�, g	, … , g��,                                             (1) 

where 	g
 ∈ �A, G, C, T� is the i�� nucleobase in the genome and  i = 1, 2, 3, … , L is the 
genome length in nucleobases. 

Each set of binding sites belonging to a given transcription factor can be represent-
ed as a matrix consisting of N rows and M columns. The number of rows N corre-
sponds to the number of binding sites conserved sequences, and the number of col-
umns M corresponds to the number of nucleobases in each binding site. Hence, each 
one of the 124 different E. Coli transcription factors (see Table 1) investigated in this 
paper can be represented as a matrix of size (N×M) denoted as X�×� and is given by 
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Fig. 3. The � Matrix of the Fifth Row Sequence in ��×�. 

X�×� = � x�� x�� x�	
x�� x�� x�	

⋮ ⋮ ⋮

… x��
… x��

⋱ ⋮
x�� x�� x�	 … x��

,                                     (2) 

where x� ∈ �A, G, C, T�; k = 1, 2, . . . , N; 	j = 1, 2, … , M. 
Each row of the matrix X�×�	can be represented by a �4 × M� binary matrix (con-

taining only 1's and 0's) where each row corresponds to one of the four nucleobases �A, G, C, T�. For example, if the 5�� row of the matrix X�×� is given by the sequence 
5’ − CAGGTCTGCA − 3’, then the corresponding binary matrix, denoted as  S, will 
have the form shown in Figure 3. 

Based on this definition of the S binary matrix, the so-called Position Frequency 
Matrix, denoted as PFM, can be obtained by averaging the N corresponding S binary 
matrices that represent the N rows in the X�×� matrix. This makes the Position Fre-
quency Matrix be of a size (4 × M). The (b, l) element in the PFM matrix will then be 
equal to the frequency of the nucleobase b occurring at position l and hence can be 
defined as 

PFM(b, l) =
�

�
∑ S�b, l, j��

��� ,                       (3) 

The (4 × M) Position Frequency Matrix can then be rewritten as 

PFM = �r�� r�� r�	
r�� r�� r�	
r�� r�� r�	

… r��
… r��
… r��

r�� r�� r�	 … r��

.                                     (4) 

where r�� = PFM(b, l), b ∈ �A, G, C, T�, and 1 ≤ l ≤ M. The (b, l) elements of the 
PFM matrix can be alternatively calculated as 

r�� =
���

�
,                                                            (5) 

where l = 1, 2, 3, … , M;	  N�
  stands for the number of times the base b ∈�A, G, C, T� occurs in column l	of the matrix X�×�. Therefore, r�� is the probability of 
the base b occurring at position	l. This makes the elements of each row in the PFM 
matrix add up to one. 

According to the schematic representation in Figures 1 and 2, the algorithm is able 
to detect TFBSs in the genome by the following steps: 
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Step 1: Position frequency matrix calculation 
The Position frequency matrix (PFM) can be calculated using equation 3 or alter-

natively using equations 4 and 5. 

Step 2: Distance metric vectors calculation 
After calculating the position frequency matrix (PFM), the next step is to assign 

each conserved sequence (i.e. each row in	X�×�) a distance metric obtained by first 
aligning that particular row with the position frequency matrix and then adding up the 
values in the matrix that correspond to each nucleobase in that row. If any of these 
values is zero (this means that this particular base does not happen at that position), 
then we add up the values occurring before this later zero and stop and then move to 
the next row. Based on this, we get a distance vector (A�×�) which can be written as 

A�×� = �a�, a�, a	, … , a��,                                                        (6) 

where a
 is a distance metric associated with the i�� row in 	X�×� and is obtained by 

a
 = ∑ r����
���	�
��� ,                                                      (7) 

where 	i = 1, 2, 3, … , N, x
� ∈ {A, G, C, T} is the (i, j) element in the 	X�×� matrix, and  
M’	 is the j�� index of the first base in the i�� row to map to a zero in the Position Fre-
quency Matrix (PFM).  

The next step is to compare the whole genome sequence to the set of conserved se-
quences represented by	X�×�. To achieve this, a sliding window of length equal to M 
(conserved sequence length) is translated all over the genome (G�×�) one base at a 
time. This will divide the genome sequence into (L − M + 1) subsequences each of 
length M. These subsequences are then assigned distance metrics following the same 
procedure used to get the distance vector	A�×�. Hence, this will yield another distance 
vector, 	B�×(�����), which can be written as 

	B�×(�����) = �b�, b�, b	, … , b������,                                     (8) 

where b
 is a distance metric associated with a sequence of length M obtained at the 
i�� nucleobase position of the genome and is defined by 

b
 = ∑ r���
���	�
��� ,                                                    (9) 

where i = 1, 2, 3, … , L − M + 1; g
 ∈ �A, G, C, T� is a base in the genome being con-
sidered. r��� is the j�� element in the PFM matrix that corresponds to the i�� base in the 
genome (g
), and  M’	 is the j�� index of the first base in the i�� subsequence in the 
genome to map to a zero in the Position Frequency Matrix. 

Step 3: Thresholding of the distance vector	B�×�������.	 
At this point, the weighting vector 	B�×(�����) contains all the possible weights 

corresponding to all possible conserved sequences in the genome sequence. The high-
er the weight value of a given sequence, the higher is the probability of that particular 
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sequence to be a real conserved sequence. To eliminate those subsequences in the 
genome with low weights, a threshold T is calculated as the minimum weight in the 
distance vector 	A�×� vector obtained in step 2. All the weights less than T are dis-
carded. The resulting weighting vector after Thresholding (C�×) is defined as 

C�×� = �c
 = b�; b� ≥ T�,                                                 (6) 

where i = 1, 2, 3, … , K; 	j = 1, 2, 3, … , L − M + 1. The threshold T is defined as 

T = min�a
�,                                                         (7) 

where i = 1, 2, 3, … , N. Now, the vector C�×� contains all the possible weights greater 
than or equal to the threshold T. In other words, the vector C�×� gives the locations of 
the subsequences in the genome that are of either exact or of high similarity to the 
given set of binding sites. As we want to only keep the locations of the subsequences 
in the genome that are of total similarity to the set of conserved sequences, all the 
values in C�×� that are different from the set of weights in the 	A�×� vector are dis-
carded. The resulting weighting vector can be written as 

D�×� = �d
 = c�; c� = a��,                                              (8) 

where i = 1, 2, 3, … , P; j = 1, 2, 3, … , K and P ≤ K. 

Step 4: TFBS Identification.  
Although at this point of the algorithm we have drastically decreased the number 

of possible conserved sequences, we still have too many possible sequences belong-
ing to the genome that are not real conserved sequences (false positives). The vector 
D�×� contains all the possible weights that are exactly the same as the weights of the 
original conserved sequences. Some of these weights are false positive, i.e. they do 
not correspond to an actual conserved sequence. To filter these false positives out, 
each one of the detected sequences is compared to the original conserved sequences 
and only the verified ones are kept. The resulting distance vector E�×� is evaluated as 

E�×� = �e
 = d�; S�d�� = X(d�), �,                                         (9) 

where i = 1, 2, 3, … , R; 	j = 1, 2, 3, … , P; S�d�� is the sequence of length M in the ge-
nome corresponding to the j�� weight in the D�×� vector. X(d�) is the conserved se-
quence in 	X�×� having the same weight d� since if these two sequences are the same, 
they have to have the same weight value. 

3 Analysis and Simulation Results 

In order to be able to handle the conserved sequences of all transcription factors in-
vestigated in this paper, a database (a cell array in MATLAB) is built where each TF 
is assigned a number. Since Escherichia coli (E. coli) is a well-studied organism with 
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several highly accurately annotated genome sequences, it is used here as a test case. 
As such, a database of E. coli transcription factor binding sequences is produced. 
Table 1 shows 124 different E. coli transcription factors obtained from Regulon data-
base [17], and Ecogene database [18]. Sequences were collated, redundancies were 
eliminated, and validated by identifying them in the E. coli genome in Ecogene. 

Table 1. E. Coli Transcription Factors. 

FN TF FN TF FN TF FN TF 
1 AcrR 32 ExuR 63 MalI 94 PspF 
2 Ada 33 FNR 64 MalT 95 PurR 
3 AgaR 34 FabR 65 MarA 96 QseB 
4 AlaS 35 FadR 66 MarR 97 RbsR 
5 AllR 36 FhlA 67 MelR 98 RcsAB 
6 AraC 37 Fis 68 MetJ 99 RhaR 
7 ArcA 38 FlhDC 69 MetR 100 RhaS 
8 ArcR 39 FruR 70 MhpR 101 Rob 
9 ArgR 40 Fur 71 MngR 102 RstA 

10 AtoC 41 GadE 72 ModE 103 RutR 
11 BaeR 42 GalR 73 MprA 104 SdiA 
12 BetI 43 GcvA 74 MtlR 105 SgrR 
13 BirA 44 GlcC 75 Nac 106 SlyA 
14 CRP 45 GlpR 76 NagC 107 SoxR 
15 CaiF 46 GntR 77 NanR 108 SoxS 
16 Cbl 47 H-NS 78 NarL 109 TdcA 
17 ChbR 48 HU 79 NarP 110 TdcR 
18 CpxR 49 HcaR 80 NhaR 111 TorR 
19 CsgD 50 HipB 81 NikR 112 TreR 
20 CspA 51 HyfR 82 NorR 113 TrpR 
21 CueR 52 IHF 83 NrdR 114 TyrR 
22 CusR 53 IclR 84 NsrR 115 UhpA 
23 CynR 54 IdnR 85 NtrC 116 UidR 
24 CysB 55 IscR 86 OmpR 117 UlaR 
25 CytR 56 KdgR 87 OxyR 118 UxuR 
26 DcuR 57 KdpE 88 PaaX 119 XapR 
27 DeoR 58 LacI 89 PdhR 120 XylR 
28 DgsA 59 LexA 90 PepA 121 YiaJ 
29 DnaA 60 LldR 91 PhoB 122 ZntR 
30 EnvY 61 LrhA 92 PhoP 123 ZraR 
31 EvgA 62 Lrp 93 PrpR 124 Zur 

 
The proposed algorithm for TFBS detection is applied to two Escherichia coli bac-

terial genomes namely: MG1655 and O157:H7 E. coli strains (both forward and re-
verse strands were investigated). Figures 4-7 show the simulation results obtained 
when the algorithm was applied to MG1655 positive strand, MG1655 negative strand, 
O157:H7 positive strand and O157:H7 negative strand, respectively. The red color in 
these figures corresponds to the set of TFBSs detected in the non-coding regions, the 
blue color to the ones detected in the coding regions, and the green color to the ones 
overlapping between non-coding and coding regions.  

The y-axis in Figures 4-7 represents the transcription factor number with some off-
set values introduced to distinguish the three set of detected TFBSs as located in the 
non-coding regions (marked in red or the ones below the 124 horizontal line) or in the 
coding regions (marked in green or above the 248 horizontal line) or overlapping in 
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between (marked in blue or between 124 and 248 horizontal lines). The offset values 
are 124 and 248. In other words, any horizontal line below 124 will pass through all 
the TFBSs related to the transcription factor indexed by the y-axis value. If this hori-
zontal line is between 124 and 248 (i.e. the middle region) a value of 124 should be 
subtracted from the y-axis value to know what transcription factor is being referred to. 
Finally, if the horizontal line is above 248 then a value of 248 should be subtracted. 
In this way, Figures 4-7 not only classify the detected TFBSs into three different sets 
but also tell which transcription factor is being referred to at each level. 

According to the simulation results shown in Figures 4-7, Table 2 gives some sta-
tistical information of the detected TFBSs in terms of percentages. As can be ob-
served, most of the detected TFBSs are located in the non-coding regions which is 
biologically relevant and agrees with theory [9] as the transcription factors which bind 
to the detected sites regulate the transcription of the adjacent genes located ahead. 

 

Fig. 4. TFBS detection using MG1655 positive strand 

                                          
Fig. 5. TFBS detection using MG1655 negative strand 
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Fig. 6. TFBS detection using O157:H7 positive strand 

                                          
Fig. 7. TFBS detection using �157:�7 negative strand 

Table 2. TFBSs detected in MG1655 and O175:H7 E. coli strains 

E. coli Strain MG1655 O157:H7 

Strand Orientation Positive  
Strand 

Negative  
Strand 

Positive  
Strand 

Negative  
Strand 

Total number of TFBSs 956 1000 642 616 
% of TFBSs in non-coding regions 85.46 85.90 86.15 85.23 
% of TFBSs in the coding regions 6.49 6.20 6.85 5.84 

% of TFBSs overlapping in between 8.05 7.90 7.00 8.93 

3.1 Discovery of New Motif Sequences 

In the gene expression process, it is very common that a single transcription factor 
binds not to an exact motif sequence but rather to a consensus motif. This fact is due 
to some bases belonging to the motif sequence are not as important as others when a 
transcription factor binds in the binding site. To consider this in the developed algo-
rithm, the search for possible TFBSs was modified such that if the subsequence being 
tested is more that 80% (this number can be modified as required) similar to the orig-
inal corresponding set of		TFBSs, then it can be considered as a possible TFBS. For 
example, applying the algorithm to MG16655	E. coli  genome (forward strand) to 
locate subsequences of similitude greater than or equal to 80% of their original corre-
sponding sets of TFBSs, yields six other possible sequences. Table 3 gives a detailed 
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description of these six sequences with their corresponding location in the genome, 
the transcription factor they belong to, the number of matching bases and the percent-
age of similitude of these sequences with their original corresponding transcription 
factor binding sites.  

Table 4 show similar simulation results but with the percentage of similitude being 
set to 70%. By so doing, thirty two subsequences result. Therefore, this algorithm 
does not only provide locations of the sets of verified conserved sequences but also 
locations of all subsequences of the genome that are partially similar as well (with a 
predefined percentage of similitude as required). This freedom in introducing this 
percentage of similitude between the target sequences to be located and the original 
transcription factor binding sites allows for more flexibility in detection. 

Table 3. Possible motif sequences based on greater than 80% similitude to their original sets of 
TF conserved sequences 

# Possible ���	
 Base Position TF # TF 
# of 

Matches 

Similarity 

Percentage 

       

1 'AGGCCUACGUUAAUUCUGCAAUAUAUUGAAUCU' 5593 52 FNR 29 87.879 

2 'AGGCCUACGUUAUUUCAGCAAUAUAUUGAAUUU' 4.3021e+005 52 FNR 28 84.848 

3 'AGGCCUACGUGAACUCUGCAAUAUAUUGAAUUU' 8.3153e+005 52 FNR 29 87.879 

4 'AGGCCUACAUGAUUUCUGCAAUAUAUUGAAUUU' 3.7386e+006 52 FNR 28 84.848 

5 'UGGUAUAACAGGUAUAAAGGUAUACA' 4.5012e+006 77 DcuR 24 92.308 

6 'UUAUACCUGUUAUACCAGAUCAAUUA' 3.3713e+006 77 DcuR 24 92.308 

       

Table 4. Possible motif sequences based on greater than 70% similitude to their original sets of 
binding sites 

# ������	���� 
��� 

������� 
��	# �� 

#	�� 
������ 

���������  
��������!� 

1 ′AGGCCUACGUUAAUUCUGCAAUAUAUUGAAUCU′ 5593 52 "#$ 29 87.879 

2 ′AGGCCUACGUUAUUUCAGCAAUAUAUUGAAUUU′ 4.3021% + 005 52 "#$ 28 84.848 

3 ′AGGCCUACAUGAUCUCUGCAAUAUAUUGAGUUU′ 7.0708% + 005 52 "#$ 26 78.788 

4 ′AGGCCUACAUUUUCUCCGCAAUAUAUUGAAUUU′ 8.1483% + 005 52 "#$ 25 75.758 

5 ′AGGCCUACGUGAACUCUGCAAUAUAUUGAAUUU′ 8.3153% + 005 52 "#$ 29 87.879 

6 ′AGGCCUACAUGAUUUCUGCAAUAUAUUGAAUUU′ 3.7386% + 006 52 "#$ 28 84.848 

7 ′AGGCCAACGGUAGAAUUGUAAUCUAUUGAAUUU′ 4.0476% + 006 52 "#$ 24 72.727 

8 ′UUAAUUAAAAUGUUACGUGUUUAAUGU′ 5.2862% + 005 53 "&'( 19 70.37 

9 ′UAUUUAAAUUUUUUGUGCUUUUGUUUU′ 1.2187% + 006 53 "&'( 19 70.37 

10 ′ACAUUAAAAAUGAAACUUAUUAAAUUG′ 1.5962% + 006 53 "&'( 19 70.37 

11 ′UUGAUUAAAAAGGUAAAUAUUUAAAAU′ 2.9025% + 006 53 "&'( 19 70.37 

12 ′UAUUUUUUGUUUUUAUUUUUUAAAGGA′ 3.4946% + 006 53 "&'( 20 74.074 

13 ′UUAAUAAAAAUGAUGAAUGAUUUAGAC′ 3.5807% + 006 53 "&'( 19 70.37 

14 ′CUGUACAUAUCAUAGACUAAACGGAUAC′ 1.7994% + 006 68 )%*+ 20 71.429 

15 ′UGGUAUAACAGGUAUAAAGGUAUACA′ 4.5012% + 006 77 ,-.( 24 92.308 

16 ′UUAUACCUGUUAUACCAGAUCAAUUA′ 3.3713% + 006 77 ,-.( 24 92.308 

17 ′CAUAGAGGUUUAAUCCUUAUUCAGAGU′ 2.4967% + 006 78 ,-/0 19 70.37 

18 ′GUCACUAUACAACGGACGGGGGAAGGA′ 4.363% + 006 78 ,-/0 19 70.37 

19 ′AAUUGCAUUUAAAAAAUAUGUUCUGUG′ 3.8409% + 005 78 ,-/0 19 70.37 

20 ′UGAUAUCACUAUAGAUAUUGAUCAUUA′ 1.3899% + 006 78 ,-/0 19 70.37 

21 ′UAUUACAAUGUAAUCAUUAAUUGCUAA′ 1.9563% + 006 78 ,-/0 19 70.37 

22 ′UGAACUCAGUAAGAGCAGUGAUAAUCA′ 2.1632% + 006 78 ,-/0 19 70.37 

23 ′CUUAAUGAAGUACUCAAUAGAUUUGUU′ 2.4831% + 006 78 ,-/0 19 70.37 

24 ′AUUGCUAAUGAAAAACAUCAAUCCAAC′ 4.2313% + 006 78 ,-/0 19 70.37 

25 ′UUAGGUAUUGAUAACAAUCAAUAGUAC′ 4.5015% + 006 78 ,-/0 19 70.37 

26 ′GUCAUGAUGGCGCAUUAUUUUGUGGUG′ 5.3802% + 005 78 ,-/0 19 70.37 

27 ′UUACCGCUGGUGCCGCAGGUCAGUUUC′ 1.3878% + 006 78 ,-/0 19 70.37 

28 ′UUACCCAUGAAGCGGUAGGUAAAUGUG′ 1.8717% + 006 78 ,-/0 20 74.074 
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29 ′GGUAUCAAACUUCUCUUUAAACAGAUA′ 4.2953% + 006 78 ,-/0 19 70.37 

30 ′CUAUUGCUUGUGCGGUAUUUGCCAAAA′ 1.8083% + 006 78 ,-/0 20 74.074 

31 ′UUUAAUAAAAAAAAGAUUAAGGGAUGA′ 5.834% + 005 78 ,-/0 19 70.37 

32 ′AUACUAUCACUACCCUUUUUUUACACA′ 3.6487% + 006 79 ,-/1 19 70.37 

 
Based on the high similitude of the sequences detected in Tables 3 and 4 of their 

original corresponding sets of TFBSs, they can be considered as possible motif se-
quences. These sequences can be tested to see if they appear in other E. coli genomes. 
If yes, this will increase the chance that these sequences are potential	TFBSs. Hence, 
they will need to be subjected to biological experiments to verify their significance. 
This type of analysis was applied to MG1655 and O157:H7 E. coli strains.  

4 Conclusion 

In this paper, a novel algorithm for transcription factor binding site (TFBS) detec-
tion is proposed. The algorithm is based on a position frequency matrix concept to 
design distance metrics that quantify the similitude between the set of conserved se-
quences and the entire DNA sequence under study. This algorithm does not use any 
type of mapping for the nucleobases and hence independent of mapping. The devel-
oped algorithm is applied to two different E. coli bacterial genomes (namely: 
MG1655 and O157:H7). Simulation results show that around 85% of the detected 
TFBSs are located in the non-coding region, 6.5%  are located in the coding regions, 
and only 8.5% are overlapped between coding and non-coding regions. This shows 
that the proposed algorithm is not only able to efficiently identify and accurately lo-
cate the known TFBSs in their exact positions in the entire genome sequence, but also 
can be utilized in the discovery of new motif sequences based on their similitude to 
the known TFBSs with a predefined percentage of similitude as required. 

Having analyzed only two E. coli genomes, six possible motif sequences were de-
tected (as shown in Table 3) based on an 80% similitude constraint, while thirty two 
possible motif sequences were detected (as shown in Table 3) based on a 70% simi-
larity constraint. Therefore, if this method of motif finding is applied to more other 
genomes as done in a previous work [1], other potential motif sequences can be iden-
tified. Hence, the previous analysis of using the position frequency matrix based algo-
rithm to detect and identify new motif sequences can efficiently yield other potential 
motif candidates that are recommended for further analysis.     

Future work can utilize the results obtained in this paper to help distinguish coding 
and non-coding regions. In other words, the developed analyses here can help in the 
gene identification problem. 
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