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Abstract. The stress induced by thermal events at cellular and molecular level
is known as the heat shock response and is one of the best conserved response
systems in organisms. In eukaryotes gene regulation induced by heat shock oc-
curs at both, transcriptional and post-transcriptional levels. Stress induced tran-
scription is directed by the transcription factor family called Heat Shock Factors
(HSF), of which the most prominent is HSF1. HSF1 recognizes and binds to
DNA sequence, called H eat shock el ement (HSE) which can be found in the
promoter of many, not only heat shock responsive genes. In this paper we show
computational analysis of regulatory changes induced by different duration time
of the heat shock condition in U2-OS wild type cells. U2-OS WT cells either
not pretreated or subjected to heat shock for 10 or 20 minutes. A fterwards, the
global analysis of HSF1 binding to DNA was made using next generation se-
quencing (ChlIP-seq). C omparison of data from both experiments showed di f-
ferences in ranking o ftop activated genes and shifts in HSF1 peaks in genes
common for both datasets. This suggests different regulatory strategies in reac-
tion to longer or shorter stress conditions, which we conclude to be an effect of
transition between mild and severe stress. Additionally we analyzed occurrence
and type of binding motifs found in promoter regions of genes with the strong-
est response to HS duration to define the most prominent HSF1 binding motifs.
Heat shock proteins are known to play an important and positive role in a num-
ber of pathophysiological states including immunity against infection, ischemia
and neural injury. HSF family also interacts with other crucial regulatory net-
works, thus knowledge of regulatory schemes used by HS response system may
help in developing clinical protocols which utilize information about heat shock
effects in diseases.

Keywords: HSF1, HSF, Heat shock, Gene regulation, Promoter region, Tran-
scription factors.
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1 I ntroduction

Regulation of gene transcription is a crucial component in the control of gene expres-
sion. The key to understanding gene regulation is identification of functional regulato-
ry sequences, such as transcription factor binding sites (TFBS) in the promoter region
of genes and other regulatory elements such as enhancers and silencers mainly present
in noncoding DNA. Challenge for contemporary genomics is to understand how tran-
scription is regulated.

Studies on the regulation of gene expression, conducted in recent years, allow us to
explore the role of non-coding DNA in cellular response. Particularly interesting in
this respect is the promoter region of the gene and its role in the process of transcrip-
tion - a key step of gene expression. Cellular response to several types of suboptimal
conditions that usually lead to denaturation of proteins, involves elevated expression
of heat shock proteins (HSPs), and is usually called the heat shock response (HSR).
Along with i nducible H SPs, w hich are r epresented b y t he m ost a bundant H SPAI,
other members of the HSP family are expressed constitutively in the absence of stress.
Constitutively e xpressed H SPs d isplay d istinct p hysiological functions for c ellular
maintenance and adaptation to stress, which is related to their roles as major molecu-
lar chaperones [1, 2]. Stress induced transcription is directed by the transcription fac-
tor family called Heat Shock Factors (HSF), of which the most prominent is HSF1. In
response to different forms o f cel lular s tress, HSF1 b ecomes t rimerized and p hos-
phorylated, and then binds to regulatory DNA elements (termed heat shock elements,
HSE) [3, 4] present in HSP genes. In addition to regulation of HSP genes, HSF1 is
involved in the regulation of several other genes coding for proteins partaking in vari-
ous cellular processes, including cell signaling and maintenance of cell integrity [5,
6]. Furthermore heat shock proteins (HSPs) are known to play an important and posi-
tive role in a number of pathophysiological states including immunity against infec-
tion, i schemia, and ne ural injury [7]. H SF family also interacts with o ther c rucial
regulatory networks, such as NF-«xB, thus knowledge of regulatory schemes used by
HS response system may give better insight into cross-talk between major regulatory
networks and help in de veloping c linical protocols which utilize i nformation about
heat shock effects in diseases.

In this p aper we s how co mputational analysis o f r egulatory changes induced by
different duration time of the heat shock condition in U2-OS wild type cells. While
this is work in progress, we present preliminary analysis, focused on promoter regions
of genes with high response to HSF1 activation.

2 M ethods

2.1 Experimental procedures

U2-OS WT (osteosarcoma cell line) cells were divided into three groups: t wo sub-
jected to heat shock for 10 or 20 minutes accordingly, and not exposed control group.
Cells were fixed with 1% formaldehyde and lysed. DNA was sonicated into fragments
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of 100-500 base pairs (bp) of length and then ChIP assay was made using anti-HSF1
antibody or without antibody (mock). In the first stage, selected promoter regions of
classical heat shock responsive genes, containing binding sites for HSF1, were ana-
lyzed by qPCR, using specific primers and ChIP-precipitated DNA. Ct values of all
samples were first normalized according to their mock probes and then these ratios
were referred to untreated control. Afterwards, the global analysis of HSF1 binding to
DNA was made using next generation sequencing (ChIP-seq approach).

2.2 Analysisof High-Throughput Sequencing data

Raw Illumina sequencing reads were analyzed according to established standards
of ChiP-Seq data analysis. Quality control of reads was performed with FastQC soft-
ware [8]. Sequences with 1 ow quality (average p hred<30) were filtered out. R eads
accepted for the analysis were aligned to human genome (hgl9) using bo wtie2.0.4
[9]. Peak detection was carried with MACS [10], whereas the outcome was annotated
with Homer [11]. Peak intersections and genomic coordinates handling was done by
application of Bedtools [12]. Full dataset consist of three peak-lists: list of peaks after
10min exposition, 20 min exposition and control group. This dataset was reduced to
two lists consisting of significant peaks after 10 min and 20 min expositions, which
we denote as ‘HS10’ and “HS20’ accordingly. These two lists were subjects of further
analyses. Analyzed peak sequences were located in promoter region, which has been
defined as 1000 bp upstream and 500 bp downstream of transcription start site (TSS).
From this s election we have analyzed top 100 p eaks in b oth sets, ranked by p eak
score. Additional functional analysis was performed using Panther [13]. Analysis of
regulatory elements was performed with aid of MEME-ChIP [14], TOMTOM [15],
NucleoSeq [16] and R-based scripts. HSF1 binding motifs were identified using the
most popular matrix presented in SwissRegulon [17] and two motif matrices present-
ed in Pacholczyk et al. [18], these matrices were generated using knowledge based
potentials.

3 Results

Main dataset shows differences in number and oflocation of detected binding sites.
Dataset was reduced to only significant peaks in comparison with control data, after
this step lists comprised of 19510 peaks in HS10 dataset and 17922 peaks in HS20
dataset. Detailed locations and counts of peaks are presented in Table 1. Analysis of
peak s coring revealed thatin case o f HS20 set we see more high scored peaks in
intergenic region and introns, than in case of HS10 set, if we count peaks that score
more than 1000, in intergenic region we found 136 in HS20 set and only 64 in HS10,
and in introns 127 i n HS20 and 54 i n HS10 set. In promoter and 5’ -UTR regions
count of the highest ranked peaks is greater in HS10 set. This may be due to the ongo-
ing chromatin remodeling after longer exposure to the heat shock. This seems con-
sistent with HSF1 need of active chromatin environment to bind HSEs [19]. The most
significant differences in peak counts between HS10 and HS20 are in promoter region
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(30.6 %) and 5°-UTR (28.8%), in favor of HS10 set. Taking this into consideration
we d ecided t o an alyze p eaks i dentified i n p romoter r egion, which we d efined as

1000bp upstream and 500bp downstream of TSS. A list of 100 genes corresponding
to the top scored peaks was chosen for further analysis. In this ranking we found 64
common genes between HS10 and HS20 datasets. We observed significant changes in
ranking among genes in HS10 and HS20 datasets, and an offset between HS10 and
HS20 peak location for given common gene. The only gene retaining its rank between
both lists is HSPA6 which is also the highest ranked gene in main dataset. Analysis of
genes which differ between HS10 and HS20 shows that time of heat shock exposure
have impact on activation of different biological processes. In both groups ‘Metabolic
process’ is the first ranked process with 35.1% in HS10 and 38.9% in HS20. In HS10
next ranked are ‘Response to stimulus‘(19%), ‘immune system process’ (14.3%) and
‘developmental process’ ( 11.9%). N ext ranks i n H S20 s ubset be long t o: * Cellular
processes’ ( cell co mmunication/cell ¢ ycle/cellular co mponent movement; 1 9.4%),
‘Biological regulation’ (11.1%), ‘Localization’ (11%). Apart from thatin HS10 we
found ‘ Apoptotic process’ (negative r egulation) and ‘ Reproduction’, which are not
found among HS20 differential genes and ‘Biological adhesion’ only presentin HS
set.

Exposure HS10 HS20
Region

Intergenic 9440 8654
Introns 7466 7292
Exons 393 338
Promoter* 1606 1114
TTS 246 220
5-UTR 163 116
3'-UTR 196 188
Sum 19510 17922

Table 1. Peak counts in genome locations. The biggest difference
in count between data sets in bold. *Defined in initial annotation
as 1k bp:TSS:+1k bp

We analyzed biological processes that ar e significantly o verrepresented in HS10
and HS20 sets. Reference set contained 21804 biological processes described in Pan-
ther database, 87 genes were mapped in HS10 list and 84 genes were mapped in HS20
list. All significant processes are overrepresented in both lists; details are presented in
Table 2. The most significant terms, for both HS10 and HS20 datasets, are protein
folding’ and ‘response to stress’. For functional terms significantly overrepresented
are distinctive to HS10 list, and are not significant in HS20 dataset, two of them are
metabolic terms. Analysis of regulatory pathways associated with our dataset shows

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 710



. HS10 HS20
Biological Process Ref
8 list | Count | Expected | +/- Expected "
« p-value | Counts +/- p-value
N counts counts

Protein folding 194 17 77 + | 9.41E-16 11 5 + 7.07E-08
Response to stress 439 16 1.75 + | 5.57E-09 9 1.69 + 1.28E-02
Protein metabolic process 2807 34 11.20 + | 1.94E-07 25 10.81 + 9.31E-03
Protein complex biogenesis 79 7 32 + | 9.29E-06 .30 + 6.60E-02
Protein complex assembly 79 7 32 + | 9.29E-06 .30 + 6.60E-02
Cellular component

biogenesis 114 7 45 + | 1.08E-04 4 44 + 2.58E-01
Primary metabolic process 7177 48 28.64 + | 3.98E-03 38 27.65 + 1.00
Response to stimulus 1671 18 6.67 + | 2.31E-02 11 6.44 + 1.00
Metabolic process 8613 50 34.37 + | 1.32E-01 44 33.18 + 1.00
Tricarboxylicacid cycle 23 2 .09 + 1098 1 .09 + 1.00
Developmental process 2846 14 11.36 + | 1.00 11 10.96 + 1.00
Multicellular organismal

process 1798 6 7.17 - | 1.00 5 6.93 - 1.00
Mytokine production 2 0 .01 - | 1.00 0 .01 - 1.00
Lipid metabolic process 902 2 3.60 - | 1.00 4 3.47 + 1.00

Table2: Top 15 functional terms ranked by adjusted p-value (multiple testing correction: Bonferroni correction method). Signifi-
cant processes are in bold. Statistically different processes b etween dataset are underlined. Number of Homo Sapiens R eference
IDs: 21 804; Mapped IDs in HS10: 87; Mapped IDs in HS20: 84. *Over- (+) or underrepresentation (-)in dataset in comparison to

reference.

that t he most significantis ‘Apoptosis signaling pa thway’ (HS10: 8. 7%, H S20:

8.2%), the following are ‘Gonadotropin releasing hormone receptor pathway’ (5.8%)
and ‘ Angiogenesis’ (4.3%) in HS10, while in HS20 it is * Angiogenesis’ (4.1%) and
’Nicotinic acetylcholine receptor signaling pathway’ (4.1%).

We identified 178 up-regulated genes and 119 down-regulated genes in HS10 with
bound HSF1, and 180 up-regulated and 93 down-regulated genes in HS20 with bound
HSF1; 140 up-regulated and 46 down-regulated genes were common to both HS10
and H S20 sets. T his is c onsistent with knowledge o f H SF1 actingas a p rotecting
agent under heat shock conditions.

To s earch f or H SF1 b inding motifsa st he first step we have s earched for
overrepresented motifs in main dataset using ME ME-ChIP. R esults show slight dif-
ference between top ranked motifs, but we observed high resemblance to the com-
monly known H SF1 binding m otif 1ogo, the most relevant motifs are presented in
Figure 1. In main dataset corresponding to HS10 next rank, after HSF family motifs,
is motif ¢ orresponding to E RG tr anscription factor with J DP2 motif following. In
main set corresponding to HS20 similarly the HSF family motifis top ranked as in
other dataset, but the following motif belongs to JDP2, no ERG motif was overrepre-
sented in HS20 set.
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Fig.1. Overrepresented motifs returned by MEME-ChIP for dataset after 10min heat shock
exposure (A) and dataset after 20min.
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Analysis of HS10 and HS20 sets show more differences between o verrepresented
motifs. In HS10t op 4 ov errepresented motifs a re a ssociated with SP1/SP3,
NFATCI1/MEF2A, G LIS/ZIC3/a nd H SF4/HSF3/HSF1.1 nH S20 we found 3
overrepresented motifs associated with ZIC3/ZIC4, MEF2A/FOXD2an d
ZNF75A/SP1. In the next step we have analyzed sequences corresponding to HS10
and HS20 using position 3 weight matrices (PWM) associated with HSF1: the most
common matrix [17] and two position w eight m atrices g enerated using kno wledge
based method [18]. In general offset between HS10 and HS20 peaks in range of the
same ge ne was no t c onnected t o s ignificant ¢ hanges i n count o f ¢ omputationally
found binding sites.

4 Conclusion

Study o f H SF1 activity in s tress has brought many insights into th e c ombinatorial
control of transcription factors that operate with HSF1 in a stage and tissue-dependent
manner. However some steps o f heat shock response control are still unknown and
analysis of data from different time exposures brings new insight in HSF1 activity.
Comparing results from both e xperiments we obs erved di fferences in group of top
activated genes and shifts in HSF1 peaks, what may be a sign of different regulatory
strategies i n r eaction to lo nger or s horter s tress ¢ onditions. C hange in r anking o f
genes bound by HSF1 also show activity in different processes, such as preventing
apoptosis in HS10 set and high response to stress activity in comparison to HS20 data.
Differences in the most active pathways and differentiating processes suggest transi-
tion from mild stress condition (10 min exposure) to severe stress condition (20 min
exposure), which can occur in borderline temperature of 43°C [20]. It is interesting if
such strategy is also presented in different tissues, healthy and cancer cells, therefore
we would like to attend to this problem when more data will be available. As it is
known HSF1 are highly expressed in human cancer cells of various origins [21, 22]
where p lay critical role in proliferation and p reservation of cancer. Having that in
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mind, it seems that targeting HSF family with knowledge of HSF1 response schemes
may help in developing clinical protocols which utilize information about heat shock
effects in diseases.

Footnotes

This work wasf undedby P olishM inistryo fS cience gr ant nrD EC-

2012/04/A/ST7/00353 (grant to M.K.)
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