
 

 

Massive Automatic Functional Annotation MAFA 

José Nelson Perez-Castillo1,  Cristian Alejandro Rojas-Quintero2, Nelson Enrique 
Vera-Parra3 

1GICOGE Research Group - Director Center for Scientific Research and Development, Distrital 
University Francisco José de Caldas, Bogotá D.C., Colombia 

nelsonp@udistrital.edu.co 
2GICOGE Research Group - Teacher / Researcher, Distrital University Francisco José de Cal-

das, Bogotá D.C., Colombia 
neverap@udistrital.edu.co 

3GICOGE Research Group - Student, Distrital University Francisco José de Caldas, Bogotá 
D.C., Colombia 

carojasq@correo.udistrital.edu.co 

Abstract. Functional annotation represents a means to investigate and classify 
genes and transcripts according to their function within a given organism. The 
annotation process for unknown sequences involves the use and integration of 
various tools that deal with the following tasks: local-alignment search for 
comparing unknown sequences with known-sequence databases (e.g. Swissprot, 
Uniprot, Refseq, among others), and proper association between sequences and 
the ontology that describes the functionality of such sequences (thus allowing 
categorization and statistical analysis of the corresponding associations). 
 

This paper illustrates the use of Massive Automatic Functional Annotation 
(MAFA), which is an open-source bioinformatics tool that allows automation, 
unification and optimization of functional annotation processes when dealing 
with large volumes of sequences. MAFA includes tools for categorization and 
statistical analysis of associations between sequences and their corresponding 
ontology. After assessing the performance of MAFA with a set of data taken 
from Diploria-Strigosa transcriptome (using an 8-core computer, namely E7450 
@ 2.40GHZ with 256GB RAM), processing rates of 4.8 seconds per sequence 
(Uniprot) and 80.2 seconds per sequence (Non-redundant) were found together 
with particular RAM usage patterns that depend on the database being pro-
cessed (1GB for Uniprot database and 9GB for Non-redundant database). Avi-

ability: https://github.com/alejo0317/MAFA 
 

Keywords: Annotator,  Functional annotation, High Throughput Sequencing, 
Gene ontology. 

Proceedings IWBBIO 2014.  Granada 7-9 April, 2014 661

mailto:nelsonp@udistrital.edu.co
https://github.com/alejo0317/MAFA


 

 

1 Introduction 

Biological-sequence decoding plays an essential ro le in almost all research branches 
of Biology. For various decades, sequencing processes were conducted using the 
Sanger method (including the human genome pro ject, where this method was crucial). 
However, the cost of the method and its limitations in  terms of performance, scalabil-
ity, speed and resolution have led to a migrat ion trend towards using new procedures 
in the last 5 years, namely the so called “next generation sequencing” [1-2]. These 
new technologies allow having lower-cost, more-efficient sequencing, which leads to 
an exponential growth in the volumes of sequenced data. 

 
Optimization of the sequencing process would be worthless without the develop-

ment and optimizat ion of suitable computing tools capable of analyzing such large 
sequenced-data volumes. In this context, one of the main needs of genomic-
transcriptomic data mining is functional annotation. As a process, functional annota-
tion consists of two stages , namely a search for known similar sequences (through 
alignment) and the association of such sequences to functional categories . The type of 
tools that are commonly used to carry  out functional annotation processes are the 
following: BLAST - Basic Local Align ment Search Tool [3-5] (for finding sequences 
through alignment) and GO - Gene Ontology [6] (which provides controlled-term 
vocabulary to describe particular genes and the gene-product attributes within a par-
ticular organism). 

 
When working with small sets of sequences, the functional-annotation process can 

be carried out as follows: the search for known similar sequences is performed over 
the BLAST server, offered by NCBI (National Center for Biotechnology Infor-
mat ion); and similar-sequence associations to the GO terms is conducted on a se-
quence-to-sequence basis, using an online tool called  AmiGO [7]. Each of the associ-
ations is categorized, one by one, by surfing (spanning) the trees available in the GO 
server.  Inconveniences occur when dealing with large sets of sequences because the 
BLAST server (offered by NCBI) is limited to a small number of sequences [8] and 
also because the one-by-one task processing requires a long time to finish.  

  
The present paper consists of four sections. Firstly, a general description of FAMA 

is presented, including its functionalities ; then, an architectural description is provid-
ed, with a module-by-module exp lanation (namely modules LBS, GOAS, GOAN and 
DBA); finally, a performance assessment is conducted and analyzed. 

2 General Description  

MAFA is an open-source bio-informatics tool that has been optimized to carry out 
functional annotation processes over large numbers of nucleotide sequences (genomes 
and transcriptomes). Moreover, MAFA includes additional tools to perform categori-
zation and statistical analysis of the corresponding sequence-ontology associations. 

Proceedings IWBBIO 2014.  Granada 7-9 April, 2014 662



 

 

MAFA is intended to operate by using commands  that are regarded as extremely  sim-
ple (almost intuitive) for biologists . 

3 Architecture 

MAFA consists of 4 modules that constitute a work flow. In  order to run and integrate 
the modules, it is necessary to use additional tools  that apply to all modules . Figure 1 
shows the 4 modules together with the work flow and the cross-module applicab le 
tools.  

 
Fig. 1. Work flow for MAFA 

3.1 Cross-module Software Components  

─ MySQL: A relat ional and multi-thread, multi-user data-base management system, 
also freeware (open). 

─ GNU/Linux: An open-source operating system that is suitable for servers and also 
for running bio-informatics tools. 

─ Biopython [9]: A freeware pro ject with various modules availab le intended to fa-
cilitate manipulation of bio-informatics data. 

─ Pygal: Freeware libraries that assist the production of graphical materials for the 
representation of information. 

─ BLAST (Basic Search Alignment Tool): A tool intended to  find local regions of 
similarity through sequence alignment. 

─ Reportlab: A freeware Pyton-based library that facilitates the creation of PDF-
format files. 

Proceedings IWBBIO 2014.  Granada 7-9 April, 2014 663



 

 

3.2 Local BLAST Server  Module 

 
Fig. 2. LBS-module Diagram  

This module is in charge of running BLAST (Nucleotides vs Amino-acids) and also 
of storing the corresponding output using the XML format. The scripts involved in 
this module are the following: 

─ BlastExec.py. Inputs: a FASTA file with sequences of nucleotides and a database 
for comparison purposes. Process: the process orders the system to run blastx using 
various cores. Output: XML file containing the alignments of the sequences. 

3.3 GO Associator 

 
Fig. 3. GOAS-module Diagram  

This module establishes the existing associations between the best hits , obtained from 
BLAST, and the terms from Gene Ontology. These associations are made by means 
of mapping tables between sequence identifiers and GO terms. This module involves 
the following scripts: 

Proceedings IWBBIO 2014.  Granada 7-9 April, 2014 664



 

 

─ BLASTXML2CSV.py : Input: an XML file containing the alignment of the corre-
sponding sequences. Process: the process selects the best alignment per sequence 
(top hit) and also writes the new file in CSV format. Output: CSV file containing 
the best alignments (top hit).   

─ Hits2go.py: Inputs: a CSV file containing the best alignments (top hits) together 
with a table that holds all mapping between  terms and identifiers. Process: the pro-
cess makes an association between sequence identifiers and GO terms. Output: 
CSV file containing the associations between GO terms and sequence identifiers. 

3.4 GO Analyzer 

 
Fig. 4. GOAN-module Diagram 

This module categorizes the GO terms according to user’s interests. The module also 
counts how many times particular input sequences appear into the per-user categories 
and produces a complete report of the results . Additionally, the module is capable of 
finding sequences that belong to more than one GO category. The scripts involved in 
this module are as follows: 

─ GoDistribution.py: Inputs: a CSV file containing the associations between GO 
categories and sequence identifiers, a file  that contains a list of more abstract terms 
intended to be associated to the more specific terms; finally, an OBO file that con-
tains the relations between GO terms . Process: the process associates the desired 
GO categories (desired by users) to the more specific terms ; it also counts how 
many times input sequences appear per desired GO category. Outputs: a CSV file 
containing associations between GO categories and sequence identifiers, a tabula t-
ed file that contains the various counts per each GO term that was to be found . 

Proceedings IWBBIO 2014.  Granada 7-9 April, 2014 665



 

 

─ GraphPie.py:  Input: a tabulated file including the various counts of each GO cate-
gory that was to be found. Process: the process produces a circular graph that illus-
trates the distribution of the categories. Output: a PNG-format image that repre-
sents the data. 

─ CrossGOSearch.py: Input: a CSV file containing the relation between GO catego-
ries and sequence identifiers and also a list of GO categories that are to be found in 
shared (common) sequences . Process: the process is a filter of all the sequences 
that appear in various GO categories at the same t ime. Output: a list of sequence 
identifiers. 

─ PdfGen.py: Inputs: a tabulated file  containing the various counts per GO category 
that was to be found, a PNG-format image that represents data. Process: the pro-
cess produces a PDF-format report that contains the analysis results. Output: PDF 
file containing a report about the analysis. 

3.5 Database Administrator 

 
Fig. 5. DBA-module Diagram  

This module carries out updating tasks over the databases of both sequences and 
mapping so that the databases are available in the local server. The elements involved 
in this module are as follows: 

─ UpdateDBs.py: Processes: a first process connects to servers NCBI and Swisprot in 
order to download the databases, another process generates the indices of down-
loaded files for BLAST, a third process connects to the FTP at Georgetown Uni-
versity in order to download a file that maps the various types of identifiers onto 
GO terms. Output: FASTA-format sequence files together with their corresponding 
BLAST indices, a file that maps GO terms onto sequence identifiers .  

Proceedings IWBBIO 2014.  Granada 7-9 April, 2014 666



 

 

─ MappingstoDB.py: Input: a file that maps GO terms onto sequence identifiers. 
Process: the process stores the corresponding mapping in a MySQL table so as to 
provide quick access. Output: a MySQL table filled with the corresponding map-
ping. 

4 Methodology and Assessment  

4.1 Data set 

─ Organism: Diploria Strigosa. 

─ Type of Sequences: Transcriptomics. 

─ Number of Sequences: 500, 1000, 2000, 4000. 

─ Format: FASTA. 

─ Database to perform the search: RefSeq Non-Redundant [10], Uniprot [11].  

─ Expected Value: 1e-3. 

This transcriptome was selected because it is a representative and typical example of 
the data normally required to annotate by the researchers from Evolutionary Immu-
nology and Immunogenetics  Group from Genetics Institute  of  Colombia National 
University which are researching for immune response of coral organisms  and disap-
pearance of reefs (MAFA was developed in the framework of this research).   

4.2 Metrics 

─ Performance: Processing time and RAM usage.   

─ Functionality: Aligned sequences, annotated sequences. 

4.3 Configuration 

─ Processing Cores: 8 of 24 from a Xeon E7450   @ 2.40GHz 

─ Available RAM: 256GB 

5 Results and Analysis  

5.1 Performance Results  

 
 

Proceedings IWBBIO 2014.  Granada 7-9 April, 2014 667



 

 

Table 1. MAFA Performance Analysis Results  

    
Module 

Databases 

# of sequences 
LBS GOAS GOAN TOTAL 

Original BLAST 

hits 

Annotated 

with GO 
Time 
(S) 

Time 
(S) 

Time 
(S) 

RAM 
(MB) 

Time 
(S) 

Uniprot 

500 180 170 3460 0 2 1050 3462 

1000 384 367 4497 2 17 1050 4516 

2000 729 689 8678 23 67 1050 8768 

4000 1585 1513 19067 67 125 1050 19259 

Refseq 

500 191 176 35976 3 8 9134 35987 

1000 406 376 86780 34 23 9134 86837 

2000 759 706 190670 89 178 9134 190937 

4000 1672 1572 287808 140 201 9134 288149 

Table 1 indicates that the module that requires longer processing times is Local 
Blast Server. Addit ionally, it  can be observed that the relation between processing 
time and the number of sequences is almost linear,  reaching database-dependent rates 
of 4.8 seconds per processed sequences (for Uniprot) and 80.3 seconds per processed 
sequence (for Non-redundant). 

Regarding RAM usage, there is d irect dependency on the database in use; on the 
other hand, there is no dependency on the number of sequences to be processed. For 
Uniprot, RAM usage is approximately 1GB; for Non-redundant, RAM usage is 9GB. 
 

6 Conclusions 

MAFA is a tool that allows functional annotation and further annotation classification 
provided there are some given term-specific categories of Gene Ontology. MAFA’s 
main functions include the following: the generation of structured-data outputs that 
advertise the amount of sequences associated to each GO term, and the establishment 
of relations between the target term identifiers of Gene Ontology and the identifiers of 
the given sequences. Additionally, MAFA generates easy-to-interpret graphs for users 
as well as complete PDF reports containing the results from the corresponding analy-
sis. It is also possible to conduct search processes in order to find  sequences that are 
simultaneously associated to various categories or GO terms.  

 
Regarding performance of the tool (MAFA), a linear behavior was observed when 

analyzing processing time and the number of sequences. In this respect, database -
dependent rates (using the 8 cores of a Xeon E7450 processor and 256GB RAM) 
were found to be 4.8 seconds per sequence for Uniprot and 80.2 seconds per sequence 
for Non-redundant. Additionally, it was observed that RAM usage patterns are inde-

Proceedings IWBBIO 2014.  Granada 7-9 April, 2014 668



 

 

pendent of the number of sequences to be processed and only depend on the reference 
database in use. 

Acknowledgements 

Work done in collaboration with High Performance Computational Center (CECAD) 
- Distrital University Francisco José de Caldas, Bogotá D.C., Colombia 
(http://cecad.udistrital.edu.co) and  Evolutionary Immunology and Immunogenetics 
Group (http://www.genetica.unal.edu.co/gie/)  - Genetics Institute - Nat ional Univer-
sity (IGUN), Colombia, (http://www.genetica.unal.edu.co). 

References 

1. Metzker, M.: Sequencing technologies – the next generation. Nature Reviews Genetics 11, 
31–46 (2010)  

2. Martin, J., Wang, Z.: Next-generation transcriptome assembly. Nature Reviews Genetics 
12, 671–682 (2011)  

3. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment 
search tool. J. Mol. Pub. Med. Biol. 215, 403–410 (1990) 

4. Madden, T.L., Tatus 
5. ov, R.L., Zhang, J.: Applications of network BLAST server. Meth. Enzymol. 266, 131–

141 (1996) 
6. Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., Madden, 

T.L.: BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2008) 
7. Ashburner M., Ball C.A., Blake J.A., Botstein D, Butler H, et al.: Gene ontology: tool for 

the unification of biology. The Gene Ontology Consortium. Nat Genet 25, 25–2  (2000) 
8. Carbon, S., et al: AmiGO: online access to ontology and annotation data. Bioinformatics 

25.2: 288-289.  (2009) 
9. Parra, N.E, Pérez, J. N, Rojas, C.A: "Presentation and Evaluation of ABMS (Automatic 

Blast for Massive Sequencing).  Advances in Computational Biology. Springer Internation-
al Publishing, 199-204.( 2014) 

10. Cock, P. J., Antao, T., Chang, J. T., Chapman, B. A., Cox, C. J., Dalke, A., ...  & de Hoon, 
M. J.: Biopython: freely available Python tools for computational molecular biology and 
bioinformatics. Bioinformatics, 25(11), 1422-1423. (2009) 

11. Pruitt, K.D., Tatusova, T., Maglott, D.R.: NCBI reference sequences (RefSeq): a curated 
non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Re-
search 35(suppl. 1), D61–D65 (2007) 

12. Bairoch, A., Apweiler, R., Wu, C. H., Barker, W. C., Boeckmann, B., Ferro, S.,  ... & Yeh, 
L. S. L.: The universal protein resource (UniProt). Nucleic acids research, 33(suppl 1), 
D154-D159.  (2005) 

 

Proceedings IWBBIO 2014.  Granada 7-9 April, 2014 669

http://www.google.com/url?q=http%3A%2F%2Fcecad.udistrital.edu.co&sa=D&sntz=1&usg=AFQjCNGJtzj1PU3y5YCuEAbwuxrzwlsttA
http://www.genetica.unal.edu.co/gie/
http://www.google.com/url?q=http%3A%2F%2Fwww.genetica.unal.edu.co&sa=D&sntz=1&usg=AFQjCNHDbj4fJ2FvKngvenssFXudxb-X1w

