
Accelerating Phylogenetic Inference on GPUs:
an OpenACC and CUDA comparison

Ĺıdia Kuan, João Neves, Frederico Pratas?, Pedro Tomás, and Leonel Sousa

INESC-ID, IST, University of Lisbon, Lisboa, Portugal
?Intel Barcelona Research Center - Intel Labs, Barcelona, Spain

{lmlk,jpmn}@sips.inesc-id.pt

{frederico.c.pratas}@intel.com

{pfzt,las}@inesc-id.pt

Abstract. Phylogenetic inference is used to derive a “tree of life” for a
collection of species whose DNA sequences are known. While several
software packages have already been developed to take advantage of
GPUs to accelerate phylogenetic inference, they typically require sig-
nificant changes to the original code, constraining code maintenance.
Recently, the OpenACC API was proposed to minimize the program-
ming efforts on accelerator devices. In this work we evaluate the appli-
cability of the OpenACC API for phylogenetic inference using the most
recent MrBayes program (version 3.2.2). A new parallelization strategy
is proposed that is specifically adapted to the latest version of MrBayes
and minimizes the data transfers between the host (CPU) and the ac-
celerating device (GPU). We further implement the proposed strategy
using both the OpenACC and CUDA programming frameworks. Exper-
imental results demonstrate that significant performance gains can be
achieved using OpenACC with a reduced amount of programming ef-
fort. Comparing with state-of-art GPU’s implementations, the proposed
OpenACC and CUDA implementations achieve a performance gain of
up to 5.2× and 5.7×, respectively. Experimental results indicate that
with a reduced amount of programming effort, we achieve a performance
that is only 10% inferior to one obtained with CUDA, which uses device
specific optimizations.

Keywords: MrBayes, CUDA, OpenACC, Phylogenetic Inference

1 Introduction

In biology, phylogenetics is the study of evolutionary relationships among groups
of organisms (e.g. species populations). Evolution is a process whereby popu-
lations are altered over time and may split into separate branches, hybridize
together, or terminate by extinction. These genealogical relations between the
organisms may be represented in a phylogenetic tree, that represents an hypoth-
esis of the order in which evolutionary events are assumed to have occurred.

? The third author performed the work while at INESC-ID.

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 589

2 Ĺıdia Kuan et al.

Phylogenetics trees have many important applications in medical and biolog-
ical research, such as the analysis of microbial communities in the human gut [6]
and in microbial mats [7], infectious diseases like Avian influenza [17, 18], or
evolutionary analysis of papillomaviruses [3] that are associated to several types
of human cancer, such as cervical cancer.

The mechanics of the evolutionary processes is studied by estimating the
rates of nucleotide and amino acid substitutions over time, and by testing mod-
els of mutation and selection using sequence data. The problem of phylogenetic
trees reconstruction based on molecular sequence data is not new in bioinfor-
matics. However, the high pace at which biological data has been accumulating
during the last decade imposes important computational challenges to fulfill the
requirements of this type of applications. There are several methods for the re-
construction of phylogenetic trees based on molecular data, namely Maximum
Likelihood [2] and Bayesian inference [4].

The method used in the scope of this article, the Maximum Likelihood (ML)
model, represents a broadly accepted criterion to score phylogenetic trees. Mr-
Bayes [5] is a popular program for Bayesian inference on phylogenetic trees based
on the ML model that implements the Metropolis Coupled Markov Chain Monte
Carlo (MC3) sampling method for Bayesian inference of phylogeny. It works by
iteratively evaluating H Markov chains, each containing a proposed phyloge-
netic tree ψi. In each iteration, the Markov chains ψ1, · · · , ψH are randomly
perturbed to give rise to another chain of possible trees ψ′

1, ψ′
2, ..., ψ′

H . After
tree perturbation, the likelihood of each tree i is evaluated to decide whether
or not to replace the initial tree ψi with the perturbed tree ψ′

i [2]. The whole
procedure is repeated until reaching a stopping criterion, such as convergence,
or the maximum number of iterations.

Due to the computational burden of phylogenetic inference [21], limitations
are usually imposed to the complexity of the evaluated trees. To overcome this is-
sue, researchers turned to parallel computing in order to speed-up execution. Re-
lated work showed that Graphics Processing Units (GPUs) can achieved promis-
ing results when compared with multi-core Central Processing Units (CPUs) [14,
13, 8, 1] for this type of computation, since data parallelism can be exploited.
Therefore, the proposed work is focused on GPU implementations. To the best
of our knowledge the first parallel version of MrBayes MC3 was proposed by
Pratas et al. [14, 13] (gMC3), which evaluated a set of computational platforms
for decreasing the computational time of MrBayes, including multi-core CPUs,
the Cell Broadband Engine, and GPUs. An improved parallel version of MrBayes
3.1.2, nMC3, was proposed by Zhou et al. [22], where a CPU+GPU heteroge-
neous system is explored to reduce the phylogenetic inference computation time.
The resulting speed-up comes mainly from the reduction in host-to-accelerator
data transfers, from distributing the computation between the CPU and the
GPU, and from overlapping data communication, between the CPU and GPU
with computation. In a subsequent version of nMC3, the authors optimized, the
stream order and the thread parallelization strategy for large data sets, achieving
further speed-up results. Ling, et al. [8] presented tgMC3, a new parallel imple-

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 590

Accelerating Phylogenetic Inference on GPUs 3

mentation of MrBayes 3.1.2 that integrates multiple functions into a single tight
GPU kernel, and perform additional GPU optimizations to further decrease the
computational time. In [1], Bao et al. proposed aMC3, an adaptive implementa-
tion of MrBayes 3.1.2, to improve MC3 on multi-GPU platforms supporting the
Compute Unified Device Architecture (CUDA) programming framework. For
this, Bao et al. used a dynamic scheme to determine the task granularity to
distribute the workload among two GPUs.

The previously described approaches explore the CUDA platform to decrease
the time required to compute MrBayes. While results show that substantial
speed-ups can be achieved, significant code changes must be performed to the
original code. This constrains code adaptation to new models and/or algorithms,
since developing for the CUDA programming framework is an expensive and
time consuming task. Recently, OpenACC, a new Application Programming In-
terface (API), was proposed [12, 20] to minimize the programming effort, namely
on heterogeneous platforms. With OpenACC, programmer only needs to specify
with compiler directives the loops and regions of code that are to be offloaded
to the GPU accelerator. This simplifies programming and eases code mainte-
nance, and allows a single source code to be compiled for a single CPU or for a
CPU+GPU system.

In this paper we explore the OpenACC API to accelerate the most recent
MrBayes 3.2.2 [16]. In particularly we show that by using a proper paralleliza-
tion scheme, and by minimizing the data transfers, it is possible to decrease
computation time by up 8× (regarding the serial CPU version), a performance
up to 4x higher than state-of-art implementations. To evaluate the quality of
the OpenACC mapping on the GPU, a hand-made CUDA version was imple-
mented, which takes into account complex and time-consuming device-specific
optimizations. It allows to increase the processing speed by around 10%, which
translates to a 9× speed-up regarding the serial CPU version.

2 Parallel Programming Environments

2.1 Programming with CUDA

CUDA is a computing platform and programming model to explore parallelism
in NVIDIA’s GPUs. When programming with CUDA it is necessary to take into
account several GPU architecture [10, 11] specific factors, such as the limits of
the global, shared, constant and texture memories, the number of registers used
per kernel and how to efficiently exploit parallelism with the limited available
resources. With CUDA, to parallelize a function, a programmer has to rewrite its
code according to the single-instruction multiple-data (SIMD) model. Moreover,
he has to manually launch the environment to run the function in the GPU;
and to be aware of the memory organization and data management mechanisms
such as to efficiently map the data into the different memory levels and/or to
efficiently copy data to and from the GPU. These steps are necessary to hide
inherent microarchitectural inefficiencies and to tune the application.

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 591

4 Ĺıdia Kuan et al.

The CUDA C allows the programmer to define C functions, called kernels,
that are executed in parallel by N different CUDA threads. Each thread is given
a unique ID that is accessible within the kernel through the built-in threadIdx

variable. A kernel function can be executed by multiple equally-shaped thread
blocks, so that the total number of threads is equal to the number of threads
per block times the number of blocks. These multiple blocks are organized into a
one, two or three-dimensional grid of thread blocks, depending on the compute
capability of the GPU. Each block within the grid can be identified by one, two
or three-dimensional indexes accessible within the kernel through the built-in
blockIdx variable.

The CUDA programming model assumes that the host (CPU) and the de-
vice maintain their own separate memory spaces, referred to as host memory and
device memory, respectively. Therefore, a CUDA program manages the global,
constant and texture memory spaces visible to kernels through the CUDA run-
time. This includes device memory allocation and deallocation, as well as data
transfer between host and device memories. Also, an amount of shared memory
is available for each block of threads, which is expected to be much faster than
global memory. Any opportunity to replace accesses to global memory by shared
memory should therefore be exploited.

2.2 Programming with OpenACC

The OpenACC API describes a collection of compiler directives to specify loops
and regions of code in standard C, C++ and Fortran to be offloaded from host
CPU to an attached accelerator, providing portability across operating systems,
host CPUs and accelerators. OpenACC allows parallel programmers to provide
simple hints, known as “directives”, to the compiler, identifying which areas of
code to accelerate, without requiring programmers to modify or adapt the under-
lying code to the specific architecture. By exposing parallelism to the compiler,
directives allow the compiler to do the detailed work of mapping the computation
onto the accelerator.

When programming with OpenACC, the programmer does not have to be
concerned with the specific details of the accelerator device architecture, even
though a few parameters are left to allow specific device optimizations (e.g.,
number of threads per block). Comparing with CUDA, the programmer only
has to inform the compiler about the for loops to be accelerated and about
the involved variables. The compiler is then responsible to tune the application,
considering the device architecture characteristics.

As an example, the pseudo-code of the MrBayes CondLikeDown function is
presented in Algorithm 1, along with the OpenACC compiler directives used to
accelerate it. In the given example, the kernels directive was used to tell the
compiler that the three nested for loops should be translated into a sequence of
kernels, to be compiled and mapped on the accelerator device. Furthermore, the
loop directive was used to inform the compiler that each nested for loop should
be executed in parallel in the accelerator. Typically the loops are divided into a
parallel domain, and the body of the loop becomes the body of the kernel. The

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 592

Accelerating Phylogenetic Inference on GPUs 5

Algorithm 1: OpenACC parallel example on CondLikeDown pseudo-code

Input: Conditional likelihood arrays at left and right of the current tree node
cli, clj

Input: Transition probability matrices tip
Output: Likelihood of the current tree node clP
#pragma acc kernels loop independent
foreach discrete rate rx, x ∈ {1, ..., 4} do

#pragma acc loop independent
foreach aligment column c ∈ {1, ...,m} do

#pragma acc loop independent
foreach tiprxrow do

clPi = Inner Product i(tipi,rxrow, cl
rx
i (c))

clPj = Inner Product j(tipj,rxrow , clrxj (c))

end
clrxP = clPi × clPj

end

end

independent directive informs the compiler that the loops are data-independent
with respect to each other. This allows the compiler to generate code to execute
the iterations in parallel without synchronization requirements. When compar-
ing with a CUDA implementation, the programming effort results in adding
only 3 lines of code, not requiring to hand-write the kernel, launch the kernel
environment and copy data into and out of the GPU.

As it can be observed from the example of Algorithm 1, parallelizing a pro-
gram in OpenACC requires a minimal set of code changes based on the introduc-
tion of a set of compiler directives. Nonetheless, it should be noticed that, to en-
able parallelization, the programmer still has to perform algorithmic changes to
the code and/or data structures. However, unlike in CUDA, these code changes
are reduced to the minimum, and still allow the resulting code to be executed
on a CPU, by signaling the compiler to ignore the directives.

3 MrBayes Parallelization

To compare, and relatively assess, the CUDA and OpenACC programming
frameworks, two parallel implementations of MrBayes 3.2.2 were developed, one
for each framework. In both cases, the objective is to efficiently explore the
GPU’s resources and the computational power in a fine-grained parallel model.
To guarantee a fair comparison, both implementations follow the same strategy,
which is presented in Figure 1. As it can be observed, the implementation efforts
were focused on reducing the execution time through the parallelization of the
most computation intensive parts of the code, and on reducing the data transfers
between the CPU and the GPU.

While nMC3, tgMC3 and aMC3 are parallel implementations of MrBayes
3.1.2, here we use MrBayes 3.2.2 [16]. This new version significantly differs both

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 593

6 Ĺıdia Kuan et al.

1. Transition probability
matrices (tip)

2. Conditional
likehoods

3. Scale Node,
recalculation of CLPs

4. Site
likelihoods

G
P

U
 G

lo
b

a
l M

e
m

o
ry

GPU Shared
Memory

cl, lnScaler, numSiteOfPat

tip cl, tip cl, tip

cl

cl, lnScaler cl, lnScaler

cl, lnScaler

cl, lnScaler, bs,
numSiteOfPat cl, lnScaler, bs,

numSiteOfPat
bs

Lu5. Global likelihood
Lu

6. accept / reject

CPU GPU

GPU Shared
Memory

GPU Shared
Memory

Fig. 1. Proposed implementation flowchart.

in code and in data structures, leading also to different the parallelization strate-
gies to achieve the maximum performance. Thus, the sequential implementation
of MrBayes 3.2.2 was profiled using kcachegrind [19] together with valgrind [9]
to disclose the most time consuming tasks. Profiling results showed that the
main step, in terms of the required computational load, corresponds to the
Phylogenetic Likelihood Function (PLF), which is responsible for the calcula-
tion of the tree likelihoods using the Felsenstein’s algorithm [2]. As in [14, 13],
the PLF code includes three main functions: CondLikeDown, CondLikeRoot and
CondLikeScaler. Thus, we started the implementation following the paralleliza-
tion steps in [14], which requires transferring the data in and out of the GPU
each time a parallelized function is called. Naturally, this lead to an associated
high data communication overhead. Thus, we proceeded by allocating all the
required data in the device, transferring data from the host/accelerator to the
accelerator/host only when strictly required. To achieve this goal, a thorough
code analysis was performed, allowing to conclude that the condLikes and scaler
arrays were modified only by a small set of functions, namely the PLF and the
Likelihood functions. Moreover, the numSitesOfPat array remained unchanged
along a Markov Monte-Carlo Chain and was used only by the Likelihood func-
tion. Based on this information, all the cl, lnScaler and numSiteOfPat data
was allocated and transferred to the GPU only once, when the RunChain function
is called. Thus, any nested-function requiring these arrays for its computation
does not demand any additional data transfer.

While the parallel implementation follows the approach in [14], since Mr-
Bayes 3.2.2 significantly differs from the previous versions, different parallel
kernels for the PLF and Likelihood functions were developed. Also, to de-

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 594

Accelerating Phylogenetic Inference on GPUs 7

crease memory transfers, the ResetSiteScalers, CopySiteScalers and the
RemoveNodeScalers functions were also parallelized and executed on the GPU,
such as to guarantee computation correctness without requiring data transfers
between the CPU and the GPU. In the final design, only the transition probabil-
ity matrices and the base frequencies of nucleotide data are transferred between
the CPU and the GPU, along the multiple MrBayes iterations.

3.1 OpenACC specific optimizations

As previously mentioned, all the data required for the parallelized functions were
allocated in the device and used by the functions. In the OpenACC implemen-
tation all the arrays were allocated on the device before the RunChain function
using the create directive. Immediately before calling the RunChain function,
the conditional likelihood arrays and the numSitesOfPath data are copied to
the device, using the update directives, as shown in Figure 1 by the first arrow
from top to bottom. When analyzing Figure 1, it is worth to notice that in Ope-
nACC the usage of the shared and constant memory is not controlled by the
programmer. Thus, data copy from the global to the shared memory in Figure 1
is automatically inferred by the compiler.

Finally, in OpenACC, the Likelihood function was implemented in a slightly
different manner than in CUDA. The final reduction step of the site likelihoods
is made in the accelerator using the reduction directive, whereas in CUDA it is
not made in the GPU.

3.2 CUDA specific optimizations

In the CUDA version, data allocation and transfers are explicitly made through
synchronous or asynchronous functions. As in OpenACC, the majority of data
transfers are performed when entering the RunChain function. However, for the
calculation of the conditional likelihoods (cl), besides the transition probability
matrices and the base frequencies of nucleotide data, it is also necessary to
explicitly transfer the indexes of the cl array in each iteration.

In the proposed CUDA design, the defined kernel environment for the PLF
functions uses a 3-dimensional block organized in a 2-dimensional grid (x, y), as
shown in Figure 2. In the adopted kernel environment each grid row computes
cl elements for a different transition probability matrix (tip). Therefore, the
number of grid rows will always be the number of different transition probability
matrices.

The thread blocks have a dimension of bx×by×bz. Since the tip data structure
has 4 × 4 elements, bx = by = 4, which equals the number of elements of tip.
Additionally, bz depends on the number of launched threads per block. While
the use of the shared memory can tune the application and help controlling
the computation in a more fine-grained manner, its usage needs to be explicitly
declared and has to be managed by the programmer. In the presented work, each
shared memory variable involved in the computation of each block consists in
an array with a number of elements equal to the number of threads per block.

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 595

8 Ĺıdia Kuan et al.

x

y

z

bx

by

bz

grid

thread
block

discrete rate

cl elements
(threads per block)/4

Fig. 2. Kernel thread arrangement for the computation of cl elements.

This guarantees that the memory access for the computation of a cl element is
coalesced.

4 Experimental Results

To evaluate the proposed OpenACC and CUDA implementations of MrBayes
3.2.2, experimental results were obtained for two different computing platforms,
both using an Intel Core i7 950@3.07 GHz with 12GB of RAM, and running the
Linux operating system. One of the computing platforms is equipped with an
NVIDIA GTX 580, with Fermi architecture [10], whereas the second platform
is equipped with a Tesla K20c, with Kepler architecture [11]. The sequential
version of MrBayes was compiled with GCC 4.6.2 with -O3 and -ffast-math
optimization flags. The proposed OpenACC implementation was compiled with
the The Portland Group (PGI) Accelerator version 12.6, which uses OpenACC
version 1.0 and CUDA 4.2. The proposed CUDA and the state-of-art nMC3,
tgMC3 were compiled using CUDA 4.2, and the aMC3 implementation were
compiled using CUDA version 5.0.

For comparison purposes, all implementations, including the state-of-art nMC3,
tgMC3 and aMC3, were compared with the sequential version of MrBayes 3.2.2.
As inputs, simulated DNA data sets of various sizes, generated with Seq-Gen [15],
were used. They are a set of 10, 20, 50, and 100 species, each using a data set
length between 5000 (5K) and 50000 (50K). For representation purposes the
data sets will be hereafter referred to as dS N, where S is the number of species
under analysis and N is the data set length. As reference, a real DNA data set
(d20 8543) was also considered to demonstrate the behavior of the algorithm
with non-simulated data.

The total execution time in both GPUs is presented in Table 1. As it can be
observed, a similar execution time behavior is found for all MrBayes implemen-
tations: in all cases, the NVIDIA K20c got slightly lower performance than the
NVIDIA GTX 580. The main reason is that the K20c has a different architec-
ture and works at a lower frequency than the GTX 580, thus requiring device
specific optimizations that were not taken into consideration. Nonetheless we

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 596

Accelerating Phylogenetic Inference on GPUs 9

Table 1. MrBayes execution time (in seconds) using the GTX 580 and the K20c GPU

GTX 580 K20c

tgmc3 nmc3 amc3 OACC† CUDA tgmc3 nmc3 amc3 OACC† CUDA

d10 5K 2.9 2.8 2.9 5.4 3.0 3.8 3.6 3.6 7.3 3.8
d10 20K 11.0 10.9 9.6 11.6 7.2 11.8 12.1 10.4 14.7 7.7
d10 50K 42.0 45.1 40.2 30.1 20.7 43.4 46.1 41.2 35.4 21.0

d20 5K 4.0 3.8 3.7 7.6 5.4 5.4 5.3 5.0 10.1 6.5
d20 20K 20.6 19.4 17.9 15.5 11.3 22.1 22.5 19.3 20.7 12.2
d20 50K 97.5 99.0 89.9 39.3 28.9 99.2 100.3 92.0 49.3 28.9

d20 8543 11.8 11.6 12.0 11.0 8.4 13.1 13.6 13.3 14.3 9.6

d50 5K 7.4 6.5 6.5 11.7 10.6 9.6 9.3 8.4 16.1 12.4
d50 20K 46.7 42.8 40.3 26.5 22.6 48.1 48.3 42.1 34.9 24.1
d50 50K 263.9 265.3 250.5 62.7 53.7 269.1 275.9 253.3 81.5 53.0

d100 5K 12.7 11.1 10.5 17.4 17.0 16.8 15.7 13.5 23.9 19.8
d100 20K 101.0 94.6 88.3 41.5 37.8 106.1 105.5 91.2 54.4 39.3
d100 50K 520.7 516.5 485.4 93.9 85.0 528.7 538.2 488.9 121.3 83.8
† OACC stands for the proposed OpenACC implementation

expect that a better performance could be obtained by rewriting the kernels in
CUDA targeting the Kepler architecture, and by using the most recent version
of OpenACC. Based on these results, from this point forward the discussion will
follow considering only the GTX 580 results.

The total execution time of the implementations is presented in Figure 3 us-
ing a logarithmic scale in the y-axis. Overall, the CUDA implementation achieves
the highest performance (lowest computation time), except for small data sets.
In general, the proposed implementation transfers the majority of data at the
beginning of execution. Since this transfer time cannot be hidden by computa-
tion time, it represents a computation overhead. However, since this strategy
significantly reduces the amount of data transfers after the initial communica-

!"

!#"

!##"

!###"

$!
#%
&'
"

$!
#%
(#
'"

$!
#%
&#
'"

$(
#%
&'
"

$(
#%
(#
'"

$(
#%
&#
'"

$(
#%
)&
*+
"

$&
#%
&'
"

$&
#%
(#
'"

$&
#%
&#
'"

$!
##
%&
'"

$!
##
%(
#'
"

$!
##
%&
#'
"

!
"
#
$%
&'
$

()*)$&#*&$

,-./01"2.304-5"+6(6(" 789:+";!6#" <9:+";(6!" 09:+";(6!6!" =>-<?@@"" @AB?""

Fig. 3. Total execution time using GTX 580 GPU.

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 597

10 Ĺıdia Kuan et al.

!"

#"

$"

%"

&"

'"

("

)"

*"

+"

#!"

,#
!-
'.
"

,#
!-
$!
."

,#
!-
'!
."

,$
!-
'.
"

,$
!-
$!
."

,$
!-
'!
."

,$
!-
*'
&%
"

,'
!-
'.
"

,'
!-
$!
."

,'
!-
'!
."

,#
!!
-'
."

,#
!!
-$
!.
"

,#
!!
-'
!.
"

!
"
#
#
$
%
"
&

$'('&)#()&

/012%"3#4!" 512%"3$4#" 612%"3$4#4#" 7895:;;"" ;<=:""

Fig. 4. Speedup achieved with GTX 580 GPU.

tion time, it allows the proposed approaches to scale better when large data sets
are used. In those cases, it can be observed that both the proposed OpenACC
and CUDA parallel implementations are significantly faster than the state-of-art
tgmc3, nmc3 and amc3 implementations.

Additional conclusions can be drawn from Figure 3, which presents the paral-
lel implementations speed-ups regarding the sequential version of MrBayes 3.2.2.
Analyzing the figure, it can be concluded that the proposed parallel approach is
efficient, especially for large data sets. For the d10 50k, nMC3, tgMC3 and aMC3

reach a speed-up of less than 4×, whereas the OpenACC and CUDA solutions
proposed herein reach 5× and 7×, respectively. For larger data sets the advan-
tage is even larger: for the d20 50k data set, the state-of-art implementations
have a performance increase of less than 3×, regarding the sequential version,
whereas the proposed techniques reach over 6× speed-up. The worst case for the
state-of-art implementations regards the larger d100 50k data set, where they
reach a speed-up of less than 2x. In contrast our technique achieves a speed-up
of up to around 9× and 8× for CUDA and OpenACC, respectively.

Comparing the proposed CUDA and OpenACC parallelization approaches,
the obtained results show that the OpenACC framework is indeed particularly
interesting for applications requiring significant code maintenance. It allows
achieving significant speed-up results with a quite smaller programming effort.
While a small price in performance is payed, since the performance is slightly
lower than with CUDA, a significant less effort is required for changing the code.
In this specific application, these were concerned with the allocation of arrays
in the CPU for storing GPU results and with the code structure, which had to
be modified in order to ease the compiler job in identifying parallelism. Other
than this, to achieve a performance speed-up of up to 8×, it was only necessary
to introduce 18 lines of code in order to parallelize 7 functions.

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 598

Accelerating Phylogenetic Inference on GPUs 11

5 Conclusions

The work herein presented evaluates the usage of OpenACC as an accelerator
framework for MrBayes, a program for phylogenetic inference. A new paralleliza-
tion strategy was developed which is specifically tailored for MrBayes 3.2.2. To
evaluate the performance obtained with OpenACC, this strategy was also im-
plemented using the CUDA programming framework, which allows using device
specific optimizations at the cost of a much higher programming effort. Finally
these results were also compared with the state-of-art nMC3, tgMC3 and aMC3

parallel implementations of MrBayes.
When compared with the related work, the proposed implementations reveal

a much better scaling with the data set size, allowing to achieve a processing
speed-up of up to 8× and 9× with OpenACC and CUDA, respectively. This
contrasts with the state-of-art nMC3, tgMC3 and aMC3, which show a speed-up
of less than 2× for the larger data sets.

Comparing the results of the proposed OpenACC and CUDA implementa-
tions, the later demonstrated a higher performance when compared with the
former. However, OpenACC requires much less programming effort, and showed
to be a more user-friendly framework to tune applications. With OpenACC,
the introduction of a few lines of code in the sequential implementation allowed
achieving significant speed-up results. In contrast, at the cost of a much higher
programming effort and by hand optimizing the code, CUDA still allowed to
decrease the computation time. Even so, it can be concluded that the OpenACC
API demonstrates a great potential to tune bioinformatics applications such as
MrBayes for the GPU without the necessary effort required for programming
these devices with CUDA.

Acknowledgment

The work presented herein was partially supported by national funds through
Fundação para a Ciência e a Tecnologia (FCT) under projects Threads (ref.
PTDC/EEA-ELC/117329/2010), P2HCS (ref. PTDC/EEI-ELC/3152/2012) and
PEst-OE/EEI/LA0021/2013, and also with the Ph.D. grant with reference num-
ber SFRH/BD/65636/2009.

References

1. Bao, J., Xia, H., Zhou, J., Liu, X., Wang, G.: Efficient implementation of mrbayes
on multi-gpu. Molecular biology and evolution 30(6), 1471–1479 (2013)

2. Felsenstein, J.: Evolutionary trees from dna sequences: a maximum likelihood ap-
proach. Journal of molecular evolution 17(6), 368–376 (1981)

3. Gottschling, M., Stamatakis, A., Nindl, I., Stockfleth, E., Alonso, Á., Bravo, I.G.:
Multiple evolutionary mechanisms drive papillomavirus diversification. Molecular
Biology and Evolution 24(5), 1242–1258 (2007)

4. Hastings, W.K.: Monte carlo sampling methods using markov chains and their
applications. Biometrika 57(1), 97–109 (1970)

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 599

12 Ĺıdia Kuan et al.

5. Huelsenbeck, J.P., Ronquist, F., et al.: Mrbayes: Bayesian inference of phylogenetic
trees. Bioinformatics 17(8), 754–755 (2001)

6. Ley, R.E., Bäckhed, F., Turnbaugh, P., Lozupone, C.A., Knight, R.D., Gordon,
J.I.: Obesity alters gut microbial ecology. Proceedings of the National Academy of
Sciences of the United States of America 102(31), 11070–11075 (2005)

7. Ley, R.E., Harris, J.K., Wilcox, J., Spear, J.R., Miller, S.R., Bebout, B.M.,
Maresca, J.A., Bryant, D.A., Sogin, M.L., Pace, N.R.: Unexpected diversity and
complexity of the guerrero negro hypersaline microbial mat. Applied and Environ-
mental Microbiology 72(5), 3685–3695 (2006)

8. Ling, C., Hamada, T., Bai, J., Li, X., Chesters, D., Zheng, W., Shi, W.: Mrbayes
tgmc3: A tight gpu implementation of mrbayes. PloS one 8(4), e60667 (2013)

9. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. ACM Sigplan Notices 42(6), 89–100 (2007)

10. Nickolls, J., Dally, W.J.: The gpu computing era. Micro, IEEE 30(2), 56–69 (2010)
11. Nvidia: March 8th 2013: http://www.nvidia.com/content/pdf/kepler/nvidia-

kepler-gk110-architecture-whitepaper.pdf
12. OpenACC-Standard.org: The openacc application programming interface v2.0

(2013)
13. Pratas, F., Sousa, L.: Applying the stream-based computing model to design hard-

ware accelerators: A case study. In: Embedded Computer Systems: Architectures,
Modeling, and Simulation, pp. 237–246. Springer (2009)

14. Pratas, F., Trancoso, P., Stamatakis, A., Sousa, L.: Fine-grain parallelism using
multi-core, cell/be, and gpu systems: Accelerating the phylogenetic likelihood func-
tion. In: Parallel Processing, 2009. ICPP’09. International Conference on. pp. 9–17.
IEEE (2009)

15. Rambaut, A., Grass, N.C.: Seq-gen: an application for the monte carlo simulation
of dna sequence evolution along phylogenetic trees. Computer applications in the
biosciences: CABIOS 13(3), 235–238 (1997)

16. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna,
S., Larget, B., Liu, L., Suchard, M.A., Huelsenbeck, J.P.: Mrbayes 3.2: efficient
bayesian phylogenetic inference and model choice across a large model space. Sys-
tematic Biology 61(3), 539–542 (2012)

17. Salzberg, S.L., Kingsford, C., Cattoli, G., Spiro, D.J., Janies, D.A., Aly, M.M.,
Brown, I.H., Couacy-Hymann, E., De Mia, G.M., Dung, D.H., et al.: Genome
analysis linking recent european and african influenza (h5n1) viruses. Emerging
infectious diseases 13(5), 713 (2007)

18. Smith, G.J., Vijaykrishna, D., Bahl, J., Lycett, S.J., Worobey, M., Pybus, O.G.,
Ma, S.K., Cheung, C.L., Raghwani, J., Bhatt, S., et al.: Origins and evolutionary
genomics of the 2009 swine-origin h1n1 influenza a epidemic. Nature 459(7250),
1122–1125 (2009)

19. Weidendorfer, J.: Sequential performance analysis with callgrind and kcachegrind.
In: Tools for High Performance Computing, pp. 93–113. Springer (2008)

20. Wienke, S., Springer, P., Terboven, C., an Mey, D.: Openaccfirst experiences
with real-world applications. In: Euro-Par 2012 Parallel Processing, pp. 859–870.
Springer (2012)

21. Yang, Z., Rannala, B.: Molecular phylogenetics: principles and practice. Nature
Reviews Genetics 13(5), 303–314 (2012)

22. Zhou, J., Liu, X., Stones, D.S., Xie, Q., Wang, G.: Mrbayes on a graphics processing
unit. Bioinformatics 27(9), 1255–1261 (2011)

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 600

