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Abstract. The exponential increase of biological data as a result of
improvements on Next Generation Sequencers has revealed the need of
powerful hardware that can cope with it. Despite the development of
several tools for dealing with this kind of experiments, the main problem
of almost all of them is the lack of scalability. In order to address it,
this article exposes the design of Bio-WINGS (Bioinformatics Workflows
in Next Generation Sequencing), a powerful system that will support a
lot of bioinformatics applications over different flavours of distributed
computing infrastructures.
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1 Introduction

Many biological processes have a computational nature and computational and
statistics models can be useful. Thus, computation has become an essential tool
in life science research, such as Genomics (microarrays and massively DNA se-
quencing) where complex tools are required. This fact generated an informatics
crisis for life science researchers due to the inherent difficulty found when using
computational resources. For that purpose, software libraries such as Biocon-
dunctor [1] and Bioperl [2] were developed, improving greatly the accessibility
to computation. Despite that, in order to use these libraries, life science re-
searchers still required programming knowledge, being a clear bottleneck for
scientists that have a life science background and no programming experience.
For instance, Bioconductor demands knowledge of the R programming language.
Moreover, in the case of massively DNA sequencing, the volume of data related
to the study of biologic sequences has increased exponentially due not only to
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better sequencing techniques but also to the reduction of costs. So, these so
called NGS (Next Generation Sequencing) experiments have exceedingly large
dataset sizes that pose new challenges. In the last years several tools have been
developed for executing these kind of experiments on distributed infrastructures.
However, one of the main problems of many of these tools is the lack of scala-
bility.
To address this, Bio-WINGS (Bioinformatics Workflows in Next Generation Se-
quencing) has been designed. Bio-WINGS is a generic architecture for executing
Bioinformatics WorkFlows (BWFs) on Distributed infrastructures. BWFs are
the process that a bioinfomatician must perform to transform raw data to pub-
lishable results. Among other features, Bio-WINGS will simplify the access to a
wide spectrum of powerful computer resources by providing a familiar graphical-
based environment or GUI (Graphical User Interface) for inexperienced users and
it will be also very extensible. The architecture proposed has been inspired by
three typical bioinformatics scenarios: the detection of mutations, the assembly
of sequences and phylogenetic studies.
The paper’s main contributions are to describe:

1. The platform architecture with 4-Tier Architectural Style, where the four
layers are: GUI (Graphical User Interface) Layer, Core Engine Layer, In-
frastructure Layer and Data Layer. The Infrastructure and Data layers have
been designed to be as independent as possible of any specific infrastructure,
allowing Bio-WINGS to run on any computing back-end.

2. The procedure for solving the three use cases mentioned before with the
architecture proposed will be exposed.

This paper is structured as follows. First, Section 2 offers an exhaustive revi-
sion of the state-of-the-art. Next, Section 3 describes all the details regarding
the generic architecture, including an overview and a description of each layer.
Section 4 shows how three scenarios that inspired this architecture are addressed
using the architecture. Finally, Section 5 ends with the most remarkable conclu-
sions extracted during the design of this work and the future steps.

2 Related work

Workflow modelling for data-intensive scientific applications is a topic already
covered in the literature. In the beginning, several initiatives for creating work-
flows to be applied to Grid deployments appeared. These contributions can be
broken into two groups: those that are standalone and those that have web-based
interfaces. The most relevant standalone projects are described in the next para-
graphs.
The Kepler project [3] provides a workflow system derived from the Ptolomey
II. In this project a workflow system is modelled as a composition of actors (that
are independent) through well-defined interfaces. The extensibility of this sys-
tem is given by the actor-oriented architecture, adding new actors. The system
has a set of actors for performing typical Grid operations (authentication, file
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copy, job execution, job monitoring, service discovery, etc.). Nevertheless, the
user needs to know a lot of details about the Grid resources.
Taverna [4] is the workflow management system of the myGrid project. It is
based on a definition language named Simple Conceptual Unified Flow Lan-
guage (SCUFL). Taverna provides data models, enactor task executions, and
graphical user interfaces.
Chipster [5] offers a wide collection of data analysis methods within the reach
of bioscientists via an intuitive graphical user interface. The analysis options
are complemented with interactive visualizations and the possibility of saving
workflows, which can be shared with other users.
With respect to the web-based user interfaces tools, there is one particularly
remarkable: Galaxy [6]. Galaxy is an open web-based platform for genomic re-
search, that makes computation accessible, ensures that all analysis are repro-
ducible and allows the transparency via the sharing of experimental results be-
tween users. A Galaxy instance can utilize compute clusters for running jobs,
and can be easily interfaced with PBS (Portable Batch System) and SGE (Sun
Grid Engine).
In the last years, a new distributed computing paradigm, Cloud Computing, has
emerged. Although Cloud Computing is of increasing interest in the computing
industry, it has the potential to revolutionize e-science by giving scientists the
computational resources they need, when they need them. Thus, Cloud Com-
puting is somewhat different from Grid computing, which is more focused on in-
tegrating heterogeneous resources from multiple ’virtual organizations’. In that
sense, a project named e-Science Central (e-SC) [7] has developed a cloud-based
Science Platform that allows scientists to store, analyse and share data in the
cloud. e-SC can be deployed on both private (e.g. Eucalyptus [8]) and public
Clouds (Amazon AWS [9] and Microsoft Windows Azure [10]]).
The difference between Bio-WINGS and the solutions cited above is the com-
pleteness. Bio-WINGS aims to offer in a single tool all the features highlighted
before, mainly: an intuitive GUI for inexperienced users and support to any kind
of application or computational back-end (Cluster, Grid and Cloud).

3 Architecture proposal

The Bio-WINGS architecture has been designed taking into account three princi-
ples: generality, extensibility and modularity. Generality refers to the possibility
of executing a wide range of bioinformatics applications and supported by any
kind of distributed computing infrastructure. Extensibility, enables a user to add
a new application or a new computing back-end. Last but not least, the mod-
ularity of the architecture allows that new elements can be added without the
need to change other parts of the system.

3.1 Overview

As shown in Figure 1, the architecture follows a 4-layer architectural style, where
the four layers are: UI Layer, Core Engine Layer, Infrastructure Layer and Data
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Layer. Next subsections describe all the details regarding each layer and their
interaction with external elements and between them.

User
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Fig. 1. Bio-WINGS architecture

3.2 User Interface Layer

The presentation to the Bio-WINGS system is offered via the UI(User Interface)
Layer. This layer can be implemented using two approaches: a web-interface that
can be accessed using any kind of web browser or a stand-alone application. In
this second case, because bioinformaticians use different Operative Systems, a
key aspect is to develop the application with a multi-platform programming
language, such as Java. As it can be seen in Figure 1, this layer is composed by
a set of UI components. Although, at the moment of the writing of this article
the UI look has not been yet defined, it should contain the following: a section
for designing the workflow, a tool bar with the bioinformatics tools available, a
section with information about the experiments submitted by the user, etc.

3.3 Workflow Engine (WINGS)

The core engine of the architecture is a workflow system called WINGS (Work-
flow In New-generation GRIDs). In previous works [11], WINGS has been de-
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scribed . However, briefly, it is a workflow engine focused on multi-grid capabil-
ities and easy extensibility. Every element is implemented as a plug-in, so new
elements (execution environments, operations, information systems, file trans-
ferrers) can be added without the need of modifying the other parts of the
system. The system has a data flow orientation: when the data is ready the
execution starts, enabling implicit parallelism. In that sense, it is aligned with
BWFs (Bioinformatics Worflows) which are mostly data flow oriented. Although
,initially, WINGS was designed as an alternative workflow system for grid infras-
tructures, thanks to its extensibility this work will adapt it to other computing
back-ends, such as Cloud Computing. As Figure 1 depicts, this layer interacts
with other elements of the architecture. The first interaction takes place with
the local drive of the user computer, getting the necessary credentials for using
the infrastructure selected by the user. Once the credentials are verified, the
workflow is analysed and if a task can be executed (the input data is available
according to the data-flow mechanism) it must be passed down to the underlying
layer as well as a reference to the input data.

3.4 Infrastructure Layer

As its name suggest, the infrastructure layer is the part of the architecture in
charge of contacting the requested computing resource by the user. The ex-
tensibility property of the architecture allows adding support to any kind of
distributed computing back-ends: Cluster, Grid or Cloud. The aim of this work
is to support the most relevant exponents of each of these three categories. In
fact, there is already support to various systems due to the use of WINGS as
core engine system. In that sense, the architecture heritages support to clusters
that use PBS/Torque and grids with the middlewares Fura and gLite [12].
This layer receives from the upper layer three elements: the user credentials, the
tasks to be run and a reference to the input data. The procedure of this layer
is as follows: the reference to the input data is passed to the innermost layer
of the architecture, the Data Layer. When the Data Layer confirms that the
input data is ready, the Infrastructure Layer submits the tasks to the computing
resource along with the user credentials to authenticate the user. All the infor-
mation regarding the status of the jobs (instances of the tasks) are passed up to
the Workflow System layer to keep the user informed about the evolution of the
execution. This procedure is repeated every time that a step of the workflow is
ready to be processed. Moreover, the user will be capable defining breakpoints
in the execution of the workflow to examine the data obtained at a certain point.

3.5 Data Layer

The innermost layer is the one responsible for staging the files needed by the
tasks to be executed in the computer resources. Analogous to the case of the
Infrastructure Layer, the Data Layer also benefits from the extensibility property
of the architecture, making feasible the use of any data storage, given that the
necessary plug-in has been developed.
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Before the execution of the tasks in the computing resources, the Infrastructure
Layer communicates the reference to the input data of the task to the Data Layer.
Then, the actions performed by the Data Layer depends on the size of the input
data. If the input data can be considered “Big Data”, the computing resource
will be allocated in the nearest location to the data resource. In other case, the
data will be transferred to the near most storage resource to the computing
resources that are going to be used. In both cases the idea is to improve the
efficiency on the data transference. Finally, when the result of a workflow step is
available, the Data Layer stages-out the data, moving the result from the data
source to the local drive.

3.6 Cross-cutting

The are two global features in the architecture: the security and the information
system between layers. Because, in a bioinformatics environment the privacy of
the data managed is a crucial issue, security is of most importance. In order to
deal with this, the communication between all the layers will be done via SSL
(Secure Sockets Layer) and the data will be encrypted and decrypted accordingly.
The authentication of the user in a computing resource or data source will be
done in most cases by means of certificates. Another aspect is the information
system, which is in charge of providing the status of the resources and the jobs
to the layers that request it.

4 Use cases

In order to illustrate the possibilities of the generic architecture described in
the previous point, this section presents three uses cases of special relevance in
the bioinformatics field (the detection of mutations, the assembly of sequences
and phylogenetic studies) that have inspired this work. After introducing each
use case, the corresponding workflow, ready to be input in the GUI Layer of
Bio-WINGS, will be explained.

4.1 Mutation analysis

Mutation Analysis is a hot topic in bioinformatics research. Sequencing indi-
viduals’ genome as a routine test is becoming economically feasible due to the
reduction of sequencing costs. Complete genome sequencing is especially inter-
esting in rare diseases and oncology. However, the process requires multiple pro-
cessing steps to reduce errors, identify variability and search if the mutation has
been already associated to a disease in existing databases. However, despite of
the popularity of the topic, there are few complete workbenches for mutation
analysis. An example is Variant [13] from the Centre of Research Prince Philippe.

Once the sequencing has been completed, the mutation analysis goes through
mainly three steps (see workflow of Figure 2). First errors that may have been
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Fig. 2. Mutation analysis workflow

producing during the sequencing process need to be reduced. It is very impor-
tant to analyse the quality of the input data, remove suspicious sequences, trim
low-quality parts and have a global assessment of the quality of the sequences
based on global statistical analysis. For this purpose, FastQC [14] is used.
Second stage deals with the alignment. Alignment consists on searching if the
sequences obtained map to a reference consensus genome and where they do.
It is important to understand that each individual has a different genome, so
the reference used is a consensus of what could be a representative genome for
a human. Therefore, alignment is a complex and computing intensive process
that depends on the size of the reference database, the size of the input set of
sequences, and the tolerance in the matchings, among other fators. There are
many tools used in alignment, but in the case of NGS (Next Generation Sequenc-
ing), hash- or suffix array-based approaches are preferred. Bowtie2 [15] manage
to align millions of sequences to a reference genome in hours or minutes, even
assuming a few sequencing errors per sequence. This stage also requires informa-
tion from databases such as GenBank, UNIPROT, genomes1000K. This stage
ends up with exact and partial matches, providing the location where similar se-
quences can be found in the reference. Variations may indicate that a mutation
is produced.
Last step is to characterise the differences found. Many of these differences may
be caused due to human variability, and could be produced in areas of the
genome with low or no activation, therefore not having a known effect on hu-
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man?s health. However, other differences may have been already identified as
particularly frequent in ill patients. Moreover, differences may be caused due to
undetected sequencing errors, polymophisms or other causes. Therefore, a sta-
tistical analysis is required before searching on the literature and databases. A
procedure called Variant Call is typically applied followed by variant annotation,
by using tools such as GAKT [16]. Databases with annotated mutations are pub-
licly available, such as dbSNP, ENSEMBL, HGMD, OpenGWAS, COSMIC and
OMIM.

4.2 De novo sequence assembly

Over the last decade, DNA sequencing machines have evolved from slow, but ac-
curate machines to massively parallel sequencing platforms capable of producing
shorter fragments, termed ”reads”, of much greater redundancy. This change in
paradigm has prompted computational biologists to develop new algorithms and
new software to handle the assembly of these short reads into full genomic data.
However, this problem of piecing together sequenced reads into a full genome,
known as de novo assembly, is similar to putting together a jigsaw puzzle with
millions to billions of very small pieces.

Reads (FASTQC)

                                            correction

                                             assembly

                                            scaffolding

sga index

sga correct

sga index

sga filter

sga assemble

bwa align

sga scaffold
Scaffolds (FASTA)

Corrected reads

Contigs/ String Graph

Fig. 3. Assembly workflow
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As the Figure 3 represents, the output of an assembly is typically a set of con-
tigs, which are contiguous sequence fragments, ordered and oriented into scaffold
sequences, with gaps between contigs within scaffolds representing regions of un-
certainty. The workflow showed uses an open source assembler called SGA(String
Graph Assembler). The problem lies in the fact that most software today cannot
cope with the vast amounts of data provided by DNA sequencers without the use
of powerful hardware, such as the distributed computing platforms supported
by Bio-WINGS.

4.3 Phylogenetics

Phylogenetics is the science of classification of organisms. It studies the evolution
of a genetically related collection of things (genes, proteins, organisms) that are
derived from a common ancestor. Thanks to the phylogenetics it is possible to
find evolutionary ties between organisms, analyse changes occurring in different
organisms during evolution, understand relationships between an ancestral se-
quence and its descendants and estimate the time of divergence between a group
of organisms that share a common ancestor.

Sequences (FASTA)

All vs all 
BLAST search

Filtering of 
list hits

Sequence clustering 
from accepted hit list

Sequence cluster

Hit list of pairwise local homologies

Accepted hit list

Sequence cluster

Sequence cluster

Sequence cluster

Fig. 4. Phylogenetics workflow

Next, an explanation of the pipeline depicted in Figure 4 is offered. The
purpose of the clustering pipeline is to assemble sets of sequences together that
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have at least local homologies (i.e., matching or nearly matching sub-sequences).
These can form the basis for the construction of individual phylogenetic data
sets.
The input of the pipeline is a FASTA file with a bunch of sequences and the first
step consists on performing an all-against-all search between those sequences.
Every sequence is queried against every other using BLAST [17] to identify all
local homologies (“hits”) between every pair of sequences. The result is a BLAST
report that contains a hit list of pairwise local homologies where each entry is
query and target sequence with a resulting hit of certain length, etc. Next, the
hits can be filtered in a variety of ways. For example, for phylogenetic purposes it
is ideal to have sequences of nearly the same length so that alignment programs
work well and there is little missing data. Thus, the list of hits can be filtered
to exclude small regions of local homology. Once a final list of hits is obtained,
a set of clusters of sequences is built. Presently, the filtering keeps only hits
that have greater than 51% coverage in both directions (at a stringent BLAST
e-value cutoff of -10). Then the filtered hit list is turned into a set of clusters
via “single-linkage clustering”. To be a member of such a cluster, a sequence
merely has to have a hit with any other member of the cluster. Even at this
stage, stricter, smaller, clusters can be obtained by other clustering methods,
such as “complete linkage clustering”. The output of the pipeline is thus a set
of clusters, each of which contains one or more sequences.

5 Conclusions and Future Work

Currently, Bioinformatics is a field that suffers an informatics crisis due to the
vast amount of data to be analyzed. In order to handle this issue, several tools
can be found in the literature that address this problem. However, all of them
lack any of the following crucial features: an intuitive interface for people (bioin-
formaticians) who normally don’t have programming skills, the availability of a
wide set of bioinformatics tools and the support of several kinds of computing
distributed infrastructures that offer scalability. For that reason, this article has
detailed the design of a generic architecture for addressing the new bioinfor-
matics challenges, Bio-WINGS. This architecture follows a 4-layer style and its
design principles are: generality, extensibility and modularity. A key aspect is
the plugin-based design that allows adding new functionality to any component
without changing the rest of the parts of the system. The architecture is intended
to support scenarios such as mutation analysis, phylogenetics studies, sequence
assembly, etc. as well as different distributed computing infrastructures (Grids,
Clouds). The current working line is completing a working prototype developed
with existing technologies.
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