
Experience with Lamport Clock Ordered Events

with Intel Threading Building Blocks

in a Glucose-Level Prediction Software

Tomas Koutny

Department of Computer Science and Engineering

University of West Bohemia

Univerzitni 8, Plzen 306 14

Czech Republic

txkoutny@kiv.zcu.cz

Abstract. Software tool was needed to verify a model predicting interstitial flu-

id glucose level, while conducting an experiment. With the tool, several tasks

execute concurrently to effectively utilize available processors. Implementing

the tool implied addressing such aspects of parallel computing which possibly

have a broader impact. In this paper, I present an experience with implementing

Lamport-clock ordered event scheme to control a parallel program employing a

task-stealing scheduler, while eliminating the possibility of accidentally mask-

ing a synchronization error. For a program based on Intel Threading Building

Blocks library, I devised a scheme to control task execution with events. These

events are ordered using the concept of Lamport Clock. As

the causal ordering of events is complete, program’s behavior can be recon-

structed for additional debugging. In the implementation devised, recording the

events induces no additional synchronization operations that could accidentally

mask a synchronization error. The work is presented in a context of glucose-

level prediction that originates from a glucose-transporter research.

Keywords: programming paradigms, parallel systems, debugging aids, glucose

level prediction

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 515

mailto:txkoutny@kiv.zcu.cz

1 Introduction

Glucose is distributed throughout the body primary through the blood vessels. The

maintenance of a normal blood glucose level is accomplished by a network of hor-

mones, neural signals, and substrate effects that regulate the endogenous glucose pro-

duction and the glucose utilization by tissues other than the brain [1]. From the blood,

glucose is transported through the blood capillary membrane to the interstitial fluid.

The interstitial fluid, which is found in the intercellular spaces between tissue cells,

supplies the cells with nutrients, including glucose. In the interstitial fluid, the glucose

is either utilized or leaves the interstitial fluid to eventually return to the blood. The

lymphatic system represents an accessory route through which the fluid can flow from

the interstitial spaces into the blood [2].

As the body regulatory mechanisms try to maintain blood glucose level within a par-

ticular range, the glucose homeostasis can be modeled. A particular model was pro-

posed to predict glucose level in various compartments such as subcutaneous tissue,

skeletal muscle tissue and visceral fat [3, 4, 5]. A software tool was developed to

verify the model, while conducting an experiment. The tool executes several tasks

concurrently to effectively utilize available processors. Implementing the tool implied

addressing such aspects of parallel computing which possibly have a broader impact.

In this paper, I present an experience with implementing Lamport-clock ordered event

scheme to control a parallel program with a task-stealing scheduler, while eliminating

the possibility of accidentally masking a synchronization error.

1.1 Prediction Model

Equation (1) gives the particular prediction model proposed. It relates present blood

and interstitial fluid glucose levels to future interstitial fluid glucose level [3]. The b(t)

and i(t) symbols denote the respective blood and interstitial fluid glucose levels at the

time t.

)())()(()()(ttictitbticgtbp (1)

The ∆t, p, cg and c symbols are supposed to have the following meaning [3, 6]. ∆t

denotes the prediction interval. When compared to Fick’s Law of Diffusion [7], b(t)-

i(t) is the concentration difference across a membrane, and cg is the surface area,

multiplied by membrane permeability, and divided by the thickness of the membrane.

Accounting the diffusion back across the membrane, p expresses a glucose gain from

the blood, thanks to intercellular clefts between the endothelial cells. c is an arbitrary

glucose level that covers the difference between the flux from the blood into the inter-

stitium and the flux from the interstitium into the cells.

As the work on the model progresses, several modifications of the model execute

concurrently. It is desirable to see the difference between the very Equation (1) and its

modifications. For example, boundary conditions were proposed for Equation (1) to

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 516

study glucose predictability, blood capillary permeability and glucose utilization rate

[6]. Another experimental feature is to expand the c-parameter into a model describ-

ing the function of GLUT/SLC2A family of proteins. These proteins are glucose

transporters, which mediate a facilitated diffusion of glucose into muscle and adipose

cells [8]. Another aim is to reverse the model (1) into a blood glucose level recon-

struction model and to compare it with the present plasma-interstitium kinetic model

[9]. When new glucose levels are measured during the experiment, they have to be

either approximated [5] or interpolated [10] prior doing these calculations. Together,

all these calculations are tasks, which should execute concurrently as much as possi-

ble.

1.2 Experiment

Based on the similarity in sugar and insulin physiologies between humans and rats,

experimenters are able to conduct the required experiments on rats. The work present-

ed was tested on hereditary hypertriglyceridemic rats. The rats were provided by the

Diabetology Center, University Hospital in Pilsen, Charles University in Prague, and

the experiments were conducted by researchers from this institution.

First, the experimenter administered a combination of xylazine and ketamine as an

anesthetic. The specific chemicals used were xylazine (active ingredient, xylazine

hydrochloride) and Narkamon (active ingredient, ketamine hydrochloride), which are

drugs that are manufactured by Bioveta a.s.

The experimenter then catheterized the internal jugular vein and the carotid artery of

the anesthetized rats. The blood glucose level was measured in the arterial blood.

Sensors associated with CGMS were placed in the subcutaneous tissue, skeletal mus-

cle tissue, and abdominal subcutaneous tissue, i.e., the visceral fat. After the sensors

were calibrated, insulin infusion was started. The insulin infusion rate was constant at

50 mUI/kg/min. A variable 20% glucose infusion was also started using a manual

correction to maintain the desired blood glucose level of 6 mmol/l. The rats were

administered the insulin and glucose infusions through their jugular vein.

After 15 min at this steady state, the experimenter administered a bolus of 0.5 g/kg

glucose. The experimenter then attempted to reach a new steady state with a blood

glucose level of 12 mmol/l. After 60 min, the experimenter administered a bolus of

0.5 UI/kg short-action insulin and stopped both infusions. The experimenter contin-

ued to monitor the glucose levels for an additional 80 min. At the end of the experi-

ment, the animal was sacrificed.

The glucose levels of all of the compartments were measured simultaneously every 5

min. The measurement tolerance for the blood glucose level was ±0.2 mmol/l. The

CGMS measurement tolerance was 15%. Medtronic Guardian® REAL-Time was the

CGMS used.

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 517

For such an experiment setup, let us illustrate performance of the model with Table 1

[6]. In Table 1, the p and cg parameters are dimensionless. The unit of the c parameter

is [mmol/l]. The study calculates the prediction error as the difference between the

calculated interstitial fluid glucose level and the following:

1. measured interstitial fluid glucose levels

2. and approximated measured interstitial fluid glucose levels [5].

The prediction error, which was in units of [mmol/l], was calculated as the average

absolute difference and as the maximum absolute difference. The first number shown

in Table 1 is the median value. The numbers within the brackets are the first and third

quartiles, respectively.

Table 1. Calculated Quantities, i.e., the Equation (1) Parameters and the Reaction Delay

 Compartment

Quantity

Subcutaneous

Tissue

Skeletal Muscle

Tissue

Visceral Fat

Glucose Gained from

the Blood (p Parameter)

0.971

(0.874; 0.992)

1.000

(0.773; 1.000)

1.000

(0.979; 1.000)

Effect of the Membrane

Surface Area and Perme-

ability (cg Parameter)

-6.217

(-6.722; -5.374)

-5.298

(-6.351; -4.424)

-5.921

(-6.102; -5.028)

Average Residual Mass

of Glucose (c Parameter)

[mmol/l]

1.127

(0.432; 1.812)

0.420

(0.245; 1.883)

0.810

(0.487; 0.978)

Prediction Interval

[min:sec]

20:00

(15:30; 21:15)

8:30

(5:00; 20:00)

5:58

(5:00; 7:01)

Approximation Average

Error [mmol/l]

0.336

(0.279; 0.476)

0.422

(0.311; 0.636)

0.373

(0.334; 0.476)

Approximation Maxi-

mum Error [mmol/l]

1.423

(0.759; 1.610)

1.363

(1.250; 1.618)

1.382

(1.158; 1.697)

Measured Average

Error [mmol/l]

0.363

(0.287; 0.498)

0.513

(0.350; 0.634)

0.460

(0.377; 0.565)

Measured Maximum

Error [mmol/l]

1.011

(0.712; 1.647)

1.966

(1.555; 2.173)

1.818

(1.526. 2.772)

1.3 Intel Threading Building Blocks

The prediction program solves a computationally intensive task, when it calculates

parameters of the prediction model (1) and other models implemented. The prediction

of the interstitial-fluid glucose level has to be completed in less than two minutes, if it

should affect the glucose infusion rate. For a parallel algorithm used in applied bioin-

formatics, synchronization operations may become a bottleneck when processing a

large data set, or when reducing the total execution time. Therefore, this work is pos-

sibly interesting to biomedical researches as it presents a useful synchronization

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 518

scheme – an addition to a library designed for developing calculation-intensive appli-

cations.

The glucose-level predicting program is decomposed into the user-interface frontend

and the prediction-calculating backend. The backend abstracts the processor time with

tasks, not threads. It uses the Intel Threading Building Blocks library [11]. This li-

brary presents a high-level task-based parallelism abstraction. The entire calculation is

partitioned to smaller tasks, which are scheduled efficiently to available cores using

the task-stealing algorithm [12] while reducing the adverse effects of cache-cooling,

context switching between logical threads and lock preemption [13]. The cache-

cooling refers to a scenario, when a processor had to evict items from a cache to pull

them back later (e.g. due to a context switch), but at the cost of hundreds of cycles per

each cache miss [14].

The library presents the parallel-programming paradigm that defines tasks which run

in shared memory. The library separates logical tasks from physical threads, thus it

scales well on multi-core chips. A programmer decomposes the problem into a set of

tasks, while expressing their mutual dependencies. Then, the library executes the

tasks using such a number of logical threads, which corresponds with the number of

physical threads.

2 Event Scheme

The Intel Threading Building Blocks library offers a cancellation mechanism to con-

trol execution times of the tasks. For the prediction program, I devised event-based

scheme that allows a finer-grained control over the tasks than the present cancellation

mechanism does.

Glucose level prediction is calculated using a set of parameters. In the practice, these

parameters can be updated after some glucose levels are already predicted. However,

it is not always necessary to discard the already predicted levels. Instead of this, it is

possible to continue with the prediction once new parameters are obtained. The pre-

sent cancellation mechanism of the Intel Threading Building Blocks library does not

allow this. Therefore, a different mechanism to control the calculation was needed.

The inspiration came from MS Windows messages, IDataAdviseHolder and IAdvis-

eSink interfaces of the Component Object Model (COM) [15]. The reason was to

follow a well-known programming practice. Therefore, data structures and interfaces

devised may look familiar to COM programmers, but they are different. There are

three different objects with the following chain of event flow:

Sender → Holder → Receiver 1 … Receiver n

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 519

To fire an event, the sender calls the holder object using holder’s SendOnEvent meth-

od. To deliver the event, the holder calls OnEvent method of each receiver that is

connected to the holder.

To receive events, receiver-object’s class implements IEventAdviseSink interface

with a single method – void IEventAdviseSink::OnEvent(EVENTMEDIUM *event).

On event, this callback is invoked and a valid pointer is passed. The structure is de-

clared as follows.

typedef struct _EVENTMEDIUM {

 void *Sender;

 int Clock;

 int Code;

 size_t wParam;

 size_t lParam;

} EVENTMEDIUM, *PEVENTMEDIUM;

The Sender member identifies the sender. This-pointer can be passed easily as the

sender is usually an object. The clock is the Lamport Clock of the program. Code

identifies the event; wParam and lParam pass additional information about the event.

The receiver is supposed to merely notice the asynchronous event and to process it

later – synchronously to its own calculation.

The Lamport Clock [16] was designed to determine order of events in a distributed

system. As clocks of different components of the distributed system might not be

synchronized, an incrementing integer counter is used per each component – the

Lamport Clock. The mechanism allows capturing the happened-before ordering nu-

merically. For the following two reasons, I consider use of the Lamport Clock as bet-

ter than relating the event time to a coordinated time:

 Incrementing an integer counter atomically presents no overhead when compared

to getting system time from the operating system. Incrementing the integer counter

avoids a possible synchronization operation with a different thread as such a thread

may compete for the same resource. For an open-source example, the cur-

rent_kernel_time function must be called to get the current time on Linux. This

function synchronizes with sequential lock [17]. If no write occurs to the system

time variable, two concurrently reading threads will not be affected. They will re-

turn from the function in the same order, in which they called the function if none

of them was preempted. Serving an interrupt, e.g. the clock-generated one, increas-

es the chance that one of these threads will be preempted. Thus, there is a chance

of altering the order in which the threads will return from the function. As subtle as

such a chance is, using a single atomic instruction avoids it.

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 520

 Reading a processor’s time-stamp counter can set the EVENTMEDIUM.Clock

member, using the rdtsc instruction on x86. However, the CR4 register controls

whether this instruction can only be executed at privilege level 0 [18]. On contrary,

it is possible to increment an integer counter atomically at any privilege level.

Therefore, integer counter is a better choice as the x86 is the present target proces-

sor.

To start receiving events, the object with the IEventAdviseSink interface implemented

has to register with an object with the IEventAdviseHolder interface implemented.

class IEventAdviseHolder {

public:

 HRESULT Advise(IEventAdviseSink *Sink,

 int *Connection) = 0;

 HRESULT Unadvise(int Connection) = 0;

 HRESULT SendOnEvent(int Code,

 size_t wParam, size_t lParam) = 0;

 HRESULT NameTheHolder(wchar_t *name) = 0;

};

The Advise method sets up a notification connection to the receiver. The Unadvise

method destroys the connection. The SendOnEvent method fires the event to all con-

nected receivers. The NameTheHolder method associates a meaningful name with the

holder to ease the debugging when printing the events recorded. The HRESULT data

type can be defined easily with typedef on non-Windows platforms.

3 Events’ Implementation

The number of instantiated objects, whose classes implement the IEventAdviseHolder

interface, is not limited. They only share a single integer counter that represents the

Lamport clock. As the program uses the Threading Building Blocks library, the clock

is declared as tbb::atomic<int>. The clock is initialized to zero. The

fetch_and_increment() function increments the clock and returns the old value.

In each class implementing the IEventAdviseHolder interface, there is a class member

declared as std::vector<EVENTMEDIUM>. As the holder object processes its events,

the events are pushed to this vector. Thus, events are stored in a decentralized manner

in several objects. Thus, recording the events causes no additional synchronization. In

the implementation, all these objects are long-life ones. When the holder object is

deleted, it prints the events recorded to the debug output.

Along calculation-specific event codes, there are five debugging event codes:

ecAdvised, ecUnadvised, ecSendOnEventEnter, ecSendOnEventExit and ecSendOn-

EventFailed.

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 521

When a receiver connects to an event holder, the holder increments the clock and

records this as an event (ecAdvised). The event stores connection identification (in

wParam) and receiver-object’s identification (in lParam). As the receiver is required

to implement the IEventAdviseSink interface, the receiver-object’s identification is

address of this interface implementation. Similarly, when disconnecting, the holder

increments the clock and records this as an event (ecUnadvised). The event stores

identification of the connection dropped (in wParam).

When a sender object calls a holder to deliver a particular event, the holder generates

and records two additional events. First, the holder increments the clock and records

this as an event (ecSendOnEventEnter). The event records that a particular sender

requested a particular holder to deliver an event. Then, the holder increments the

clock and delivers the event to each connected receiver. Finally, the holder increments

the clock and records this as an event (ecSendOnEventExit). It records that the event

was fired and delivered to all connected receivers successfully. In a case of failure, an

event indicating the failure is recorded instead (ecSendOnEventFailed). In all these

three cases, the number of connected receivers is recorded (in wParam).

As a result of these rules described, the recorded events provide the following infor-

mation:

1. The number and identifications of receivers connected to each particular holder is

known.

2. It is known which sender fired which event.

3. Based on the items 1 and 2, it can be determined which event was delivered from

which sender to which receivers.

4. Nested events are detected due to the ecSendOnEventEnter and ecSendOnEven-

tExit/Fail events.

5. It is detected when event delivery failed and if the number of receivers changed

while the event was being fired.

6. The causal ordering of events is complete. For any two events, it is always known

which event happened before.

7. Due to the ecSendOnEvent enter and exit events, events being fired concurrently

are detected.

8. In addition, the event scheme and its implementation are compatible with the vec-

tor clock of distributed systems.

Generating the debug events is a subject to a conditional compilation of the event

library. A release version can omit the debug events, unlike a debug version. When

compiled as a dynamic library, the debug or release version can be loaded by the pro-

gram as needed. To the debug output, the senders and receivers can print meaningful

names next to their identifications, which are recorded by the holder objects.

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 522

4 Controlling tbb::task with Events

When implementing, the Threading Building Blocks’ task inherits from the tbb::task.

The inherited task must override the tbb::task* tbb::task::execute() method. This

method implements the task’s activity. During the activity, the task may create and

wait for other tasks as needed. Once finished, the task returns either NULL or a point-

er to a task that executes after this task has finished. Entire calculation finishes when

all tasks have finished. A task cannot be terminated. It can be merely asked to cancel

its activity gracefully. A cancelled task skips the execute method, if it has not started

yet. Otherwise, the cancellation has no effect. Just the task can poll

tbb::task::is_cancelled bool [6].

In the implementation of the event scheme devised, there is a thread that begins the

calculation. It spawns tbb::tasks, which begin the calculation. The thread is wrapped

with an object. Internally, this object is called MasterCalculation. It receives events

from the program’s frontend to control the program’s backend. The thread-wrapping,

MasterCalculation, object signalizes the events received to the tasks.

The event scheme devised applies to a calculation with a fixed number of tasks. All

tbb::task objects are allocated before the actual calculation begins. Each tbb::task

object has an unsigned integer property signalizing pending events. Each event has a

corresponding bit. On event, the MasterCalculation object sets the respective bit for

each tbb::task object with an atomic operation – OR particularly. After doing a certain

amount of work, the tbb::task object checks the bits set to react on pending events.

The event-parameters are not propagated to the tbb::task objects. With multiple events

of the same type, the tbb::task object reacts to a particular type of event just once.

This eliminates the overhead of reacting to an outdated event. Furthermore, it enforc-

es a synchronous event-processing from the tbb::task object perspective. Such a pro-

cessing eliminates synchronization-related overhead and possible race conditions that

would be induced otherwise by an asynchronous event processing. The following

code fragment illustrates this.

#define pefCancelCalculation 1

 //The tasks should terminate gracefully.

#define pefParametersChange 2

 //The parameters have changed and should be updated.

class CTask : public tbb:task {

protected:

 tbb::atomic<unsigned int> mPendingEvents;

public:

 void SignalEvents(unsigned int NewEvents) {

 AtomicOr(&mPendingEvents, NewEvents);

 }

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 523

 void SetupParameters {

 //As the event parameters are not propagated to tbb::

 //task objects, current parameters must be obtained.

 }

 tbb::task* Execute() {

 //Run until a cancellation is requested.

 while (!(mPendingEvents & pefCancelCalculation)) {

 //Serve all signalized events,

 //e.g. parameters change.

 if (mPendingEvents & pefParametersChange) {

 AtomicAnd(&mPendingEvents, ~pefParametersChange);

 SetupParameters();

 }

 //If there is no event signalized, then calculate.

 while (!mPendingEvents) {

 DoAPieceOfWork();

 }

 } //while (!(mPendingEvents & pefCancel...

 } //tbb::task* Execute

}; //CTask

class CMasterCalculation : public IEventAdviseSink {

protected:

 tbb::task* mTasks[TaskCount];

 tbb::atomic<unsigned int> mPendingEvents;

public:

 void OnEvent(EVENTMEDIUM *event) {

 AtomicOr(&mPendingEvents, event->Code);

 for (size_t i=0; i<TaskCount; i++)

 mTasks[i]->SignalEvents(event->Code);

 }

 void Execute() {

 tbb::task_list list;

 do {

 WaitForASignalToStartTheCalculation();

 //Waits until the program’s frontend signalizes

 //with a conditional variable.

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 524

 list.clear();

 list.push_back(...);

 spawn_root_and_wait(list);

 //En-queues first tasks, which can run

 //and waits until all tasks have finished.

 SendOnEvent(this, ecDataCalculated, 0, 0, 0);

 //The program’s fronted is connected to this

 //object. It receives this event once

 //the calculation finishes.

 } while (!(mPendingEvents & pefTerminate));

 }

}; //CMasterCalculation

5 Conclusion

The presented event-based scheme was verified with a particular implementation. The

implementation calculates glucose quantities for the blood, subcutaneous tissue, the

skeletal muscle tissue and the visceral fat [3, 4, 6, 10]. In addition to the debugging

events, the following events are used to control the calculation.

 pefTerminate – This event signalizes that the program terminates so that the Mas-

terCalculation object should finish its execution. On this event, the MasterCalcula-

tion object signalizes the pefCancelCalculation to each tbb::task object and waits

until they all finish.

 pefCancelCalculation – A tbb::task object detecting this event should cancel its

calculation gracefully, yet immediately.

 pefDataAvailable – When new data are measured, the frontend generates this

event. To process all measured data, the MasterCalculation object runs the calcula-

tion repeatedly as long as this event flag is set.

 pefRecalculateAll – All running tbb::tasks cancel their activity, discard the already

calculated results and the entire calculation is restarted.

 pefParamatersChange – This event assumes a situation, when the user changes

some parameters, but it is not necessary to restart the entire calculation. All run-

ning tbb::tasks just fetch the recent calculation parameters and continue the calcu-

lation.

Evaluating the scheme from a practical experience [3, 4, 6, 10] in the horizon of two

past years, it provides all the functionality needed. The practice gave no need to modi-

fy the scheme devised.

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 525

6 References

1. Longo, D., Fauci, A., Kasper. A., Hauser, S., Jameson, J., Loscalzo, J.: Harrison’s princi-

ples of internal medicine. Mc Graw-Hill, New York (2011)

2. Guyton, A.C., Hall, J.E.: Medical textbook of physiology. Elsevier Inc., Philadelphia

(2006)

3. Koutny, T.: Prediction of interstitial glucose level. IEEE Trans. Inf. Technol. Biomed. 16,

136-142 (2012)

4. Koutny, T.: Estimating reaction delay for glucose level prediction. Med. Hypotheses 77,

1034 – 1037 (2011)

5. Koutny, T.: Modeling of compartment reaction delay and glucose travel time through in-

terstitial fluid in reaction to a change of glucose concentration. In 10th IEEE International

Conference on Information Technology and Applications in Biomedicine, Corfu (2010)

6. Koutny, T.: Glucose Predictability, Blood Capillary Permeability, and Glucose Utilization

Rate in Subcutaneous, Skeletal Muscle, and Visceral Fat Tissues. Comput. Biol. Med. 43,

1680-1686 (2013)

7. Bronzino, J.D.: The biomedical engineering handbook. CRC Press, Connecticut (2006)

8. LeRoith, D., Olefsky, J.M., Taylor, S.I.: Diabetes Mellitus: A fundamental and clinical

text. Lippincott Williams & Wilkins, Philadephia (2003)

9. Facchinetti, A., Sparacino, G., Cobelli, C.: Sensors & algorithms for continuous glucose

monitoring reconstruction of glucose in plasma from interstitial fluid continuous glucose

monitoring data role of sensor calibration. J. Diabetes Sci. Technol. 1, 617-623 (2007)

10. Koutny, T.: Gluocose-level interpolation for determining glucose distribution delay. In

XIII Mediterranean Conference on Medical and Biological Engineering and Computing,

Sevilla (2013)

11. Intel® Threading Building Blocks Reference Guide. Intel Corporation Document Number:

315415-015US

12. Lu, S.: Improving the task stealing in Intel threading building blocks. In International Con-

ference on Cyber-Enabled Distributed Computing and Knowledge Discovery, Beijing

(2011)

13. Intel® Threading Building Blocks Documentation. Intel Corporation Document Number:

327304-002US

14. Reinders, J.: Intel threading building blocks: Outfitting C++ for multi-core processor paral-

lelism. O'Reilly Media, Sebastopol (2007)

15. Microsoft Developer Network IDataAdviseHolder interface (COM).

http://msdn.microsoft.com/en-

us/library/windows/desktop/ms686622%28v=vs.85%29.aspx

16. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. CACM 21,

558-565 (1978)

17. Love, R.: Linux Kernel Development. Addison-Wesley Professional, Crawfordsville

(2010)

18. Intel® 64 and IA-32 Architectures Software Developer’s Manual. Intel Corporation Order

Number: 325462-045US

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 526

