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Abstract. We are witnessing one of the major revolutions in parallel
systems. The consolidation of heterogeneous systems at different levels
-from desktop computers to large-scale systems such as supercomputers,
clusters or grids, through all kinds of low-power devices- is providing a
computational power unimaginable just few years ago, trying to follow
the wake of Moore’s law. This landscape in the high performance com-
puting arena opens up great opportunities in the simulation of relevant
biological systems and for applications in Bioinformatics, Computational
Biology and Computational Chemistry. This introductory article shows
the last tendencies of this active research field and our perspectives for
the forthcoming years.
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1 Introduction

The integration of the latest breakthroughs in biochemistry and biotechnology
from one side and high performance computing and computational modelling
from the other, enables remarkable advances in the fields of healthcare, drug
discovery, genome research, systems biology and so on. By integrating all these
developments together, scientists are creating new exciting personal therapeutic
strategies for living longer and having healthier lifestyles that were unfeasible
not that long ago.

Those efforts have created new research fields such as Bioinformatics and
Computational Biology, defined most broadly as informatics in the domains of
biology and biomedical research. Bioinformatics spans to many different research
areas, such as life sciences, where there are many examples of scientific applica-
tions for discovering biological and medical unknown factors that could greatly
benefit from increased computational resources.
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Indeed, as computing resources available on current systems are limited,
this limitation becomes a serious constraint, then hindering it from success-
fully taking the next step forward. For instance, applications such programs of
Molecular Dynamics (MD) [1], employed to analyse the dynamical properties of
macromolecules such as folding and allosteric regulations, or software used for
solving atom-to-atom interactions for drug discovery, such as AutoDock [2] and
FlexScreen [3], could clearly benefit from enhanced computing capabilities and
also from some novel algorithms approaches like those inspired by nature such
as Genetic algorithms [4] or Ant Colony Optimization techniques [5].

There are other applications, which are actually working well, but their ex-
ecution is too slow for providing feedback in real-time to the users, and thus
limiting the effectiveness and comfort of such applications. In this group, we
may cite biomedical image processing applications, such as X-ray computed to-
mography or mammography for breast cancer detection. The low-performance of
these applications can drastically affect the patient’s health. For instance, imag-
ine a patient who is waiting for mammography results. She is actually waiting for
a breast cancer diagnostic, thus the acceleration of the diagnosis time becomes
paramount for the patient’s health.

High Performance Computing technologies are at the forefront of those rev-
olutions, making it possible to carry out and accelerate radical biological and
medical breakthroughs that would directly translate into real benefits for the so-
ciety and the environment. In this regard, Graphics Processing Units (GPUs) are
providing a unique opportunity to tremendously increase the effective compu-
tational capability of the commodity PCs, allowing desktop supercomputing at
very low prices. Moreover, large clusters are adopting the use of these relatively
inexpensive and powerful devices as a way of accelerating parts of the applica-
tions they are running. Since June 2011, when the fastest supercomputer was the
Tianhe-1A, placed in the National Supercomputing Centre at Tianjin (China)1,
including up to 7.168 NVIDIA R© TeslaTM M2050 general purpose GPUs, several
supercomputers have followed this trend.

However, the inclusion of those accelerators in the system has a great impact
on the power consumption of the system, as a high-end GPU may increase the
power consumption of a cluster node up to 30% which is actually a big issue.
This is a critical concern especially for very large data centres, where the cost
dedicated to supply power to such computers represents an important fraction of
the Total Cost of Ownership (TCO) [6]. The research community is also aware
of this and it is making efforts in striving to develop reduced-power installations.
Thus, the GREEN500 list2 shows the 500 most power efficient computers in the
world. In this way, we can see a clear shift from the traditional metric FLOPS
(FLoating point Operations Per Second) to FLOPS per watt.

Virtualization techniques may provide significant energy savings, as they en-
able a larger resource usage by sharing a given hardware among several users,
thus reducing the required amount of instances of that particular device. As a

1 http://www.top500.org/
2 http://www.green500.org/
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result, virtualization is being increasingly adopted in data centres. In particular,
cloud computing is an inherently energy-efficient virtualization technique [7], in
which services run remotely in a ubiquitous computing cloud that provides scal-
able and virtualized resources. Thus peak loads can be moved to other parts of
the cloud and the aggregation of a cloud’s resources can provide higher hard-
ware utilization [8]. Public cloud providers offer their services in a pay as you
go fashion, and provide an alternative to physical infrastructures. However, this
alternative only becomes real for a specific amount of data and target execution
time.

The rest of the paper is organized as follows. We briefly introduce some HPC
architectures we think are at the forefront of this revolution in Section 2. In
Section 3 we present some relevant Bioinformatics applications that are using
HPC alternatives to deal with their computational issues before we summarize
our findings and conclude with suggestions for future work.

2 HPC Architectures

Traditionally, high performance computing has been employed for addressing
bioinformatics problems that would otherwise be impossible to solve. A first
example was the preliminary assembly of the human genome, a huge effort in
which the Human Genome Project was challenged by Celera Genomics with a
different approach, consisting in a bioinformatics post analysis of whole sets of
shotgun sequencing runs instead of the long-standing vector cloning technique,
arriving very close to an unpredictable victory [9].

In this Section, we briefly summarize the high performance systems that has
been commonly used in Bioinformatics. Among them, we highlight throughput-
oriented architectures such as GPUs, large-scale heterogeneous clusters and clouds
or distributed computing systems, with a discussion about how the latest break-
throughs in these architectures are being used in this field.

2.1 GPU computing

Driven by the demand of the game industry, graphics processing units (GPUs)
have completed a steady transition from mainframes to workstations to PC
cards, where they emerge nowadays like a solid and compelling alternative to
traditional computing platforms. GPUs deliver extremely high floating point
performance and massively parallelism at a very low cost, thus promoting a new
concept of the high performance computing (HPC) market; i.e. heterogeneous
computing where processors with different characteristics work together to en-
hance the application performance taking care of the power budget. This fact has
attracted many researchers and encouraged the use of GPUs in a broader range
of applications, particularly in the field of Bioinformatics, where developers are
required to leverage this new landscape of computation with new programming
models which ease the developers task of writing programs to run efficiently on
such platforms altogether [10].
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The most popular microprocessor companies such as NVIDIA, ATI/AMD or
Intel, have developed hardware products aimed specifically at the heterogeneous
or massively parallel computing market: Tesla products are from NVIDIA, Fire-
stream is AMDs product line and Intel Xeon Phi comes from Intel. They have
also released software components, which provide simpler access to this comput-
ing power. CUDA (Compute Unified Device Architecture) is NVIDIAs solution
as a simple block-based API for programming; AMDs alternative was called
Stream Computing and Intel relies on X86-based programming. More recently
(in 2008), the OpenCL3 emerged as an attempt to unify all of those models with
a superset of features, being the best broadly supported multi-platform data-
parallel programming interface for heterogeneous computing, including GPUs,
accelerators and similar devices.

Although these efforts in developing programming models have made great
contributions to leverage the capabilities of these platforms, developers have to
deal with a massively parallel and high throughput-oriented architecture[11],
which is quite different than traditional computing architectures. Moreover,
GPUs are being connected with CPUs through PCI Express bus to build het-
erogeneous parallel computers, presenting multiple independent memory spaces,
a wide spectrum of high speed processing functions, and communication latency
between them. These issues drastically increase scaling to a GPU-cluster, bring-
ing additional sources of latency. Therefore, programmability on these platforms
is still a challenge, and thus many research efforts have provided abstraction
layers avoiding to deal with the hardware particularities of these accelerators
and also extracting transparently high level of performance, providing portabil-
ity across operating systems, host CPUs and accelerators. For example, libraries
interfaces for programming with popular programming languages like OMPSs
for OpenMP 4 or OpenACC5 API, which describes a collection of compiler di-
rectives to specify loops and regions of code in standard programming language
such as C, C++ or Fortran.

2.2 Supercomputers

Many of the supercomputers in the TOP500 list are heavily involved in compu-
tational biology research. For example Titan, the fastest system in the TOP500
in the list of November 2013, works for providing a molecular description of
membrane fusion, one of the most common ways for molecules to enter or exit
from living cells. Looking at the top ten supercomputers of this latest TOP500
list, the SuperMUC cluster, installed at the Leibniz Supercomputer Centre in
Monaco, is often employed in bioinformatics, for example in analysis of linkage
disequilibrium in genotyping and Piz Daint, installed at the CSCS/Swiss Bioin-
formatics Institute in Lugano, has been successfully employed for a challenge of
evolutionary genomics, for calculating selection events in genes many times more
quickly.

3 http://www.khronos.org/opencl/
4 http://openmp.org/wp/
5 http://www.openacc-standard.org/
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Looking at the November 2013 list, it is very interesting to see that the
two top supercomputers in the word make use of co-processors to improve their
performance. In particular, Tianhe-2 has more then 16.000 nodes composed by
two Processor Intel Xeon E5 and three Coprocessor Intel Xeon Phi 31S1, while
Titan uses NVDIA K20 cards to improve its performance. Notably, in the top ten
supercomputers, four make use of co-processors to enhance their performance.
This choice should also be analysed in the view of the power consumption of
these supercomputers: Tianhe-2 has a declared power consumption of 17GW for
a total of 33 PetaFLOPS, while Titan has a power consumption of 8GW for
a total of 17 PetaFLOPS. For example, the fourth supercomputer, K, installed
at the Riken Institute of Japan, has a power consumption of 12GW for 10.5
PetaFLOPS. The energy saving using co-processors is therefore clear.

Concerning performance, virtual clusters should be also considered as very
reliable in this cloud era: for example a virtual infrastructure of 17024 cores
built using a set of Amazon Elastic Cloud Computing virtual machines was able
to achieve 240.09 TeraFLOPS for the High Performance Linpack benchmark,
placing the cluster at position 102 in the November 2011 Top500 list. A similar
example was performed on Windows Azure, bringing together 8064 cores for a
total of 151.3 TeraFLOPS, a virtual cluster that reached position 165 in in the
November 2011 Top500 list.

2.3 Grid and Cloud computing

In current bioinformatics, the cost of buying and maintaining an in-house cluster
is very important and this explains why the grid computing paradigm gained a
great success in the mid-1990s [12]. The problem is that even if the low-level de-
tails of the grid infrastructures are hidden via middlewares, often the application
of bioinformatics methods on HPC facilities requires specialized knowledge. A
suitable solution to offer easy-to-use and intuitive access to applications are sci-
ence gateways, which offer specific services tailored to the users needs. Nonethe-
less, ten years later, cloud computing was presented as a more flexible solution
with respect to grid [13]. Cloud computing overcomes the idea of volunteer com-
puting for resource sharing by proposing an on-demand paradigm in which users
pay for what they use. Cloud computing providers offer their services according
to several fundamental models: infrastructure as a service (IaaS), platform as a
service (PaaS), software as a service (SaaS), and Data as a service (DaaS), where
IaaS is the most basic model while the other provide higher level of abstraction
[14].

By instantiating many virtual resources a parallel cluster can be deployed on
demand, where common libraries such as the Message Passing Interface (MPI)
can be exploited. Also batch-processing systems can be used to manage the differ-
ent computations in a queue. The flexibility and the cost-effectiveness provided
by cloud computing is extremely appealing for computational biology, in partic-
ular for small-medium biotechnology laboratories which need to perform bioin-
formatics analysis without addressing all the issues of having an in-house ICT
infrastructure [15]. An intermediate solution is represented by Hybrid Clouds
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that couple the scalability offered by general-purpose public clouds with the
greater control and ad-hoc customizations supplied by the private ones [16].

Moreover, frameworks for distributed access to files such as Hadoop can be
adapted to distributed programming paradigms such as MapReduce [17]. For
example, the Crossbow [18] genotyping program leverages the Hadoop imple-
mentation of MapReduce to launch many copies of the short-read aligner Bowtie
[19] in parallel. After Bowtie has aligned the reads (which can be billions for a
human re-sequencing project) to the reference genome, Hadoop automatically
sorts and aggregates the alignments by chromosomal region. It then launches
many parallel instances of the Bayesian single-nucleotide polymorphism (SNP)
caller SOAPsnp [20] to accurately call SNPs from the alignments.

3 Applications

This section describes some bioinformatics applications from the High Perfor-
mance computing point of view.

3.1 Virtual Screening

In this Section, we summarize the main technical contributions for the paral-
lelization of Virtual Screening (VS) methods on GPUs available on the bibli-
ography. Concretely, we pay special attention to the parallelization of docking
methods on GPUs.

In terms of implementations, the trend seems to be reusing available libraries
when possible and implement the achievements into existing simulation packages
for VS. Among the most-used strategies are either implementing the most time-
consuming parts of previously designed codes for serial computers, or redesigning
the whole code from scratch. When porting VS methods to GPUs, we should
realize that not all methods are equally amenable for optimization. Programmers
should check carefully how the code works and whether it is suited for the target
architecture. Irrespective of CUDA, most authors maintain that the application
will be more accessible in the future thanks to new and promising programming
paradigms which are still in the experimental stage or are not yet broadly used.
Among them, we may highlight OpenCL or DirectCompute.

Dock6.2 In the work of Yang et al. [21] a GPU accelerated amber score in
Dock6.2 is presented. They report up to 6.5x speedup factor with respect to
3,000 cycles during MD simulation compared to a dual core CPU. 6.

The lack of the single-precision floating point operations in the targeted GPU
(NVIDIA GeForce 9800GT) produces small precision losses compared to the
CPU, which the authors assume as acceptable. They highlight the thread man-
agement utilizing multiple blocks and single transferring of the molecule grids
as the main factor that dominates the performance improvements on GPU.

6 http://dock.compbio.ucsf.edu/DOCK 6/
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They use another optimization technique, such as dealing with the latency
attributed to thread synchronization, divergence hidden and shared memory
through tiling, that authors state may double the speedup of the simulation. We
miss a deeper analysis on the device memory bandwidth utilization. It is not
clear whether the pattern accesses to device memory in the different versions of
the designs presented here are coalesced or not, which may drastically affect the
overall performance.

They finally conclude that the speedup of Amber scoring is limited by the
Amdahl’s law for two main reasons: (1) the rest of the Amber scoring takes a
higher percentage of the run time than the portion parallelized on the GPU, and
(2) partitioning the work among SMs will eventually decrease the individual job
size to a point where the overhead of initializing an SP dominates the application
execution time. However, we do not see any clear evaluation that supports these
conclusions.

Autodock In the paper of Kannan et al. [22] the migration to NVIDIA GPUs of
part of the molecular docking application Autodock is presented. Concretely, they
only focus on the Genetic Algorithm (GA) which is used to find the optimal dock-
ing conformation of a ligand with respect to a protein. They use single-precision
floating point operation arguing that, “GA depends on relative goodness among
individual energies and single precision may not affect the accuracy of GA path
significantly”. All the data relative to the GA state is maintained on the GPU
memory, avoiding data movement through the PCI Express bus.

The GA algorithms need random numbers for the selection process. They
decide to generate the random numbers on the CPU instead of doing it on the
GPU. The explanation of that is two-fold according to the authors: (1) it enables
one-to-one comparisons of CPU and GPU results, and (2) it reduces the design,
coding and validation effort of generating random numbers on GPU.

A very nice decision is what the authors call CGPU Memory Manager that
enables alignment for individual memory request, support for pinned memory
and join memory transfer to do all of them in just one transfer. Regarding the
fitness function of the GA, authors decide to evaluate all the individuals in a
population regardless of modifications. This avoids warp divergences although it
makes some redundant work.

Three different parallel design alternatives are discussed in this regard. Two
of them only differ in the way they calculate the fitness function, assigning
the calculation of the fitness of an individual either to a GPU thread or GPU
block. A good comparison between them is provided. The last one includes an
extra management of the memory to avoid atomic operations which drastically
penalizes the performance.

All of these implementations are rewarded with up to 50x in the fitness calcu-
lation, but they do not mention anything about global speedup of the Autodock
program.
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Genetic algorithms based docking In literature is also available [23] an
enhanced version of the PLANTS [24] approach for protein-ligand docking using
GPUs. They report speedup factors of up to 50x in their GPU implementation
compared to an optimized CPU based implementation for the evaluation of
interaction potentials in the context of rigid protein. The GPU implementation
was carried out using OpenGL to access the GPU’s pipeline and Nvidia’s Cg
language for implementing the shaders programs (i.e. Cg kernels to compute
on the GPU). Using this way of programming GPUs, the developing effort is
too high, and also some peculiarities of the GPU architecture may be limited.
For instance, the authors say that some of the spatial data structures used in
the CPU implementation can not directly be mapped to the GPU programming
model because of missing support for shared memory operations [23].

The speedup factors observed, especially for small ligands, are limited by sev-
eral factors. First, only the generation of the ligand-protein conformation and
the scoring function evaluation are carried out on the GPU, whereas the opti-
mization algorithm is run on the CPU. This algorithmic decomposition implies
time-consuming data transfers through PCI Express bus. The optimization algo-
rithm used in PLANTS is the Ant Colony Optimization (ACO) algorithm [25].
Concretely, authors propose a parallel scheme for this algorithm on a CPU clus-
ter, which use multiple ant colonies in parallel, exchanging information occasion-
ally between them [26]. Developing the ACO algorithm on the GPU as it has
been shown in [27] can drastically reduce the communications overhead between
CPU and GPU.

3.2 Next Generation Sequencing

Next Generation Sequencing data analysis is one of the most demanding appli-
cation in bioinformatics. Starting from routinely procedure like alignments and
variant calling to more complex challenges like genome wide annotations and
biomarkers correlation to diseases, NGS analyses are time-consuming and high-
performance computing can provide great advantages in this field of genomics,
in particular if applied to medicine and healthcare.

Global aligners are very fast, usually tanks to the use of particular data repre-
sentation approaches, such as the Burrows-Wheeler transform (BWT). Nonethe-
less, using the option to achieve the optimal result, through the backtracking
approach, they are quite slow, despite the use of these reliable representations of
data. The problems are even more complex while local alignments are needed.
GPU solutions are available in this sense, such as CUSHAW, which is a CUDA
compatible short read alignment algorithm for multiple GPUs sharing a single
host. This aligner only provides support for ungapped alignment, but in this
context has results comparable with BWT-based aligners such as Bowtie and
SOAP2. Another example is BarraCUDA, which is directly based on BWA, and
delivers a high level of alignment fidelity and is comparable to other mainstream
alignment programs. It can perform alignments with gap extensions, in order to
minimize the number of false variant calls in re-sequencing studies.
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Nonetheless, sometime BLAST is the only option to achieve reasonable re-
sults (for example while working on clustering of sequences, for the creation of
domain profiles, or for the analysis of chimera sequences). In this case the com-
putation can be extremely time consuming. Although CUDA based solutions
exist also for BLAST, the algorithm is complex to implement on GPGPU and
the scalabilities achieved are limited. Therefore, also depending on the dimen-
sion of the reference database, grid and cloud approaches can still be the only
solutions to achieve results in reasonable amount of time. A number of solutions
are available, but it is worthy to cite the results obtained on the EGEE/EGI
grid platform for sequence clustering [28].

Other issues can be found in genome assembly projects, where the bottlenecks
are represented by the huge amount of memory required for the representation
of data. Reference assembly is faster and less demanding than de novo, but the
problem is the creation of the indexes: in particular some assembly algorithms
use read-indexing, while others (the newer ones) usually index the whole genome.
While the formers use significantly more memory if the number of reads is higher,
the latters use significantly more memory if the genome size is larger. Concerning
de novo assembly, the memory consumption is less demanding while using a suffix
tree based approach, but really critical while using approaches relying on graphs.
This can be solved using a pure parallel approach, for example through the MPI
library, such as the one proposed by Abyss (for genome analysis) or Trinity (for
transcripts reconstruction). In this case High Performance Computing is more
oriented at sharing the memory resources than the CPU power, which is also
very important.

But the real problems with NGS is probably the huge amount of data that
are produced, in particular while this technique is entering in the clinical prac-
tice for analysing personal variations, tumour profiles and gene-therapy safety.
Big data represents a huge concern in NGS, because managing terabytes of data
requires specific technologies and capabilities (High Availability clusters), redun-
dant facilities (RAID, Backups), shared and distributed file systems (LUSTRE,
GPFS), clustered databases (Mysql cluster, Oracle), indexing and searching pro-
cess (Lucene, HBase), and dedicated network configuration (bridging, bonding).
Also security becomes a primarily concern and virtualization should be care-
fully considered, because, although extremely powerful and flexible, should be
certified for its privacy if employed for managing healthcare data. The diverse
methods and technologies often require also the re-engineering of applications
in the field of bioinformatics. Solutions such as Hadoop and MapReduce for
example are nowadays largely employed to treat omics data at large scale.

3.3 Molecular Dynamics

In bioinformatics, one of the most successful application of GPU concerns Molec-
ular Dynamics simulations. Molecular Dynamics is certainly the most CPU-
demanding application in computational biology, because it consists in solving
time step after time step the Newtons equations of motion for all the atoms of
a protein, taking as boundary conditions the initial protein structure and a set
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of velocity taken from a Gaussian distribution. Molecular Dynamics is often em-
ployed in combination to docking screenings, because while VSs are very useful
for discarding compounds that clearly do not fit with the identified target, the
identification of lead compounds is usually more challenging [29]. The reason
is that docking software have errors in computing binding energy in the range
of few kcal. Therefore, best compounds achieved through the virtual screening
process usually undergone to a protocol of energy refinement implemented using
Molecular Dynamics [30].

Indeed, by employing specific simulations schemas and energy decomposi-
tion algorithm in the post analysis, Molecular Dynamics allows to achieve more
precise quantification of the binding energy [31]. Common techniques for energy
estimation are MM-PBSA and MM-GBSA, which consist in the evaluation of
the different terms that compose the binding energy taking into account dif-
ferent time point. In particular, it is possible to account the binding energy to
the sum of molecular mechanical energies in the gas phase, solvation contribute,
evaluated using an implicit solvent model like Generalized Born, or solving the
Poisson-Boltzman equation, and the entropic contribute, estimated with normal
mode analysis approximation, for example.

Moreover, Molecular Dynamics can be used to predict protein structures (ab-
initio or refining models computed by homology) or to analyse protein stability
(for example verifying what happens in case of mutations). The simulation of
proteins can be also very useful to verify the interactions of residues within the
macromolecule, for example to clarify why the binding of certain molecule (such
as ATP) can change the structure of a particular binding site, a phenomenon
that is usually referred as allostery.

The possibility of using NVIDIA cards prompted the use of Molecular Dy-
namics techniques in computational chemistry and biology researches to new
boundaries of discovery, enabling their application in wider range of situations.
Compared to CPUs, GPUs run common molecular dynamics, quantum chem-
istry and visualization applications more than 5x faster. In particular, the team
of AMBER has worked very hard to improve the performance of their simula-
tor on GPUs, which is now extremely fast, between 5x and 10x, depending on
the number of atoms, the composition of the system and the type of simulation
desired [32]. Also GROMACS7 has been ported on GPUs [33], with very good
performance when the implicit solvent is used and performance that are less
brilliant in case of explicit solvent.

There are also a lot of tests concerning MD simulations on Intel Xeon Phi,
which in theory has the great advantage to run normal x86 code, while for GPUs
the software should be re-implemented in a considerable portion. Although this
is true, without optimization, the scalability of the Intel Xeon Phi is not as
powerful as for the NVIDIA cards [34]. However, by improving the code to
obtain an optimal and a balanced vectorization, the achieved performance are
consistently faster, up to 10x for the Intel Xeon Phi coprocessor.

7 http://www.gromacs.org
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4 Conclusions and outlook

Applications with a real impact on the society, such as those in the field of Bioin-
formatics and Computational Biology, can take advantage from improvement in
high performance computing to overcome computational limitations they have
by definition. Those applications are developed to give the opportunity to cre-
ate new exciting personal therapeutic strategies for living longer and having
healthier lifestyles that were unfeasible not that long ago.

This work summarizes the main trends in HPC applied to Bioinformatics. We
show several successful stories and application fields, in which relevant biological
problems have been solved (or are being targeted) thanks to the computational
power available in current processors. We have also pointed out the main draw-
backs in the HPC arena, which may limit this good alliance between Bioinfor-
matics and HPC systems. Among them we may highlight power consumption,
high learning-curve in emerging programming models to leverage their compu-
tational power and the total cost of ownership. We think that the investigations
on improvement Bioinformatics application’s performance on HPC systems will
be also of high technological interest as those applications have novel computa-
tional patterns that can lead the next generation of heterogeneous computing
systems.
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5. O. Korb, T. Stützle, and T. E. Exner, “Accelerating Molecular Docking Calcu-
lations Using Graphics Processing Units,” Journal of Chemical Information and
Modeling, vol. 51, pp. 865–876, 2011.

6. X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for a Warehouse-
Sized Computer,” in Proceedings of the 34th annual International Symposium on
Computer Architecture, ser. ISCA 07. ACM, 2007, pp. 13–23.

7. C. Hewitt, “ORGs for Scalable, Robust, Privacy-Friendly Client Cloud Comput-
ing,” IEEE Internet Computing, vol. 12, no. 5, pp. 96–99, Sep. 2008.

8. A. Berl, E. Gelenbe, M. Di Girolamo, G. Giuliani, H. De Meer, M. Q. Dang,
and K. Pentikousis, “Energy-efficient cloud computing,” The Computer Journal,
vol. 53, no. 7, pp. 1045–1051, 2010.

9. J. C. Venter, M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural, G. G. Sutton,
H. O. Smith, M. Yandell, C. A. Evans, and R. A. Holt, “The Sequence of the
Human Genome,” Science, vol. 291, no. 5507, pp. 1304–1351, Feb. 2001. [Online].
Available: http://dx.doi.org/10.1126/science.1058040

10. M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Morton,
E. Phillips, Y. Zhang, and V. Volkov, “Parallel Computing Experiences with
CUDA,” IEEE Micro, vol. 28, pp. 13–27, July 2008.

11. M. Garland and D. B. Kirk, “Understanding throughput-oriented Architectures,”
Communications of the ACM, vol. 53, pp. 58–66, 2010.

12. I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid: Enabling
Scalable Virtual Organizations,” Lecture Notes in Computer Science, vol. 2150,
2001. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.
1.1.24.9069

13. A. Bateman and M. Wood, “Cloud computing,” Bioinformatics, vol. 25, no. 12,
p. 1475, Jun. 2009. [Online]. Available: http://dx.doi.org/10.1093/bioinformatics/
btp274

14. M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of cloud computing,”
Commun. ACM, vol. 53, no. 4, pp. 50–58, Apr. 2010. [Online]. Available:
http://dx.doi.org/10.1145/1721654.1721672

15. D. D’Agostino, A. Clematis, A. Quarati, D. Cesini, F. Chiappori, L. Milanesi,
and I. Merelli, “Cloud Infrastructures for In Silico Drug Discovery: Economic and
Practical Aspects,” BioMed Research International, vol. 2013, pp. 1–19, 2013.
[Online]. Available: http://dx.doi.org/10.1155/2013/138012

16. D. D?Agostino, A. Galizia, A. Clematis, M. Mangini, I. Porro, and A. Quarati,
“A qos-aware broker for hybrid clouds,” Computing, vol. 95, no. 1, pp. 89–109,
2013. [Online]. Available: http://dx.doi.org/10.1007/s00607-012-0254-4

17. (2014, Jan.) Apache hadoop project. [Online]. Available: http://hadoop.apache.org

18. B. Langmead, M. C. Schatz, J. Lin, M. Pop, and S. L. Salzberg, “Searching for
SNPs with cloud computing.” Genome biology, vol. 10, no. 11, pp. R134+, Nov.
2009. [Online]. Available: http://dx.doi.org/10.1186/gb-2009-10-11-r134

19. B. Langmead, C. Trapnell, M. Pop, and S. Salzberg, “Ultrafast and
memory-efficient alignment of short DNA sequences to the human genome,”
Genome Biology, vol. 10, no. 3, pp. R25–10, Mar. 2009. [Online]. Available:
http://dx.doi.org/10.1186/gb-2009-10-3-r25

20. R. Li, Y. Li, X. Fang, H. Yang, J. Wang, K. Kristiansen, and J. Wang, “Snp
detection for massively parallel whole-genome resequencing,” Genome research,
vol. 19, no. 6, pp. 1124–1132, 2009.

Proceedings IWBBIO 2014.  Granada 7-9 April, 2014 505



The role of High Performance Computing in Bioinformatics 13

21. H. Yang, Q. Zhou, B. Li, Y. Wang, Z. Luan, D. Qian, and H. Li, “GPU Acceleration
of Dock6’s Amber Scoring Computation,” Advances in Computational Biology, vol.
680, pp. 497–511, 2010.

22. S. Kannan and R. Ganji, “Porting Autodock to CUDA,” Evolutionary Computation
(CEC), 2010 IEEE Congress on, pp. 1–8, 2010.
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Springer Berlin / Heidelberg, 2006, vol. 4150, ch. 22, pp. 247–258.

25. M. Dorigo, “Optimization, learning and natural algorithms,” Ph.D. dissertation,
Politecnico di Milano, Italy, 1992.
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