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Abstract. The goal of this study was to propose a method for meta-
analysis of expression sets of single and dual channel intensity microarray
data. This involved solving the issue of computational and biological con-
sistency of the expression measures. We tested this approach on two sets
from microarray data acquired in experiments performed to search for
genetic biomarkers of radiosensitivity. The expression sets were unified
taking into account the technical aspects of the design of the experi-
ment and commonly used algorithms for the removal of batch effects.
The resulting genes were subject to annotation analysis for enrichment
in ontologies and signaling pathways.
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1 Introduction

Breast cancer is the most common occurring in women in terms of new cases
observed yearly and the second type of tumor that causes death in the female
population [1]. One of the means of treatment in this case is radiotherapy that
relies on the application of ionizing radiation to tumor cells. This type of rem-
edy, depending on the patient, may result in late adverse effects that diminish
the quality of life after therapy. This case, known as radiosensitivity, is studied
with the goal of creating diagnostic tests that would allow to personalize the
treatment in terms of dose and time intervals between fractions. One of the ap-
proaches aims at finding a genetic signature of radiosensitivity.

Microarray technology is a method of high-throughput analysis of gene ex-
pression that enables simultaneous examination of thousands of features in search
of markers involved in a studied biological condition. The Gene Expression Om-
nibus (GEO) [2] is a constantly growing public repository that holds the possi-
bility of merging data sets in order to forge a comprehensive image of examined
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2 Integrating Expression Data from Different Microarray Platforms

cases. However, meta-analysis of gene chips often brings forward issues implying
the need of data processing for biological as well as numerical consistency.

In previous studies, various methodologies have been considered for com-
bining biochip data sets across platforms. As simple approaches such as stan-
dardization and mean-centering had their limitations, more complex concepts
started to emerge. Parmigiani et al. [3] introduced the Probability of Expres-
sion method, which transforms expression data to signed probabilities. Benito
et al. proposed Distance Weighted Discrimination, relying on Support Vector
Machines [4]. Breitling et al. present the Rank Product computation scheme
[5], Johnson et al. created the Empirical Bayes methods [6] and Shabalin et al.
developed cross-platform normalization (XPN) based on iterative k-means clus-
tering [7]. These algorithms have been evaluated in numerous studies on merging
multiple microarray data sets [8, 9], yet it seems that the question of integration
of platforms of different nature has not been attended to.

We developed an approach that addresses the particularly intricate issue of
combining data sets from two types of microarrays: oligonucleotide and cDNA.
In this case the problem lies in the different nature of the signal resulting from
the platforms being respectively one channel and two channel data. The data
sets were produced in the course of two studies which were designed for assessing
differential expression in genes related with radiosensitivity.

2 Materials and Methods

2.1 Data Sets

For the purpose of this study data sets from two independent experiments were
used. One provided blood samples from 60 breast cancer patients, of which 30
were classified as radiosensitive (RS) and 30 as radioresistant (RR). The blood
was divided into two portions - one sample per patient left as control, the other
was irradiated with a 2 Gy high dose of X-rays. After 24h, lymphocytes were
filtered and RNA extracted for amplification and labeling in the microarray ex-
periment. In this case the HuGene 1.0 ST Affymetrix oligonucleotide chips were
used, which provide raw intensity CEL files.

As for the second experiment, samples were gathered from 59 patients: 31
radiosensitive and 28 radioresistant [10]. The irradiated samples were subject to
4 Gy of X-rays. Again, after 24h, lymphocytes were filtered and RNA extracted.
This procedure was carried out on custom cDNA Breakthrough 20K arrays. The
experiment was designed in a dye-swap manner, such that each sample was la-
beled with the cy3 and cy5 dye and hybridized to the chip against a reference
sample from a pooled set of 30 breast cancer cell lines. This data was obtained
as a set of GPR files produced by the GenePix 5.1 scanning software.

The scheme in Figure 1 presents the typical course of a meta-analysis of
expression values. The diagram in Figure 2 illustrates the work flow for our
strategy.
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Fig. 1. Work flow for a standard microarray comparative analysis.

2.2 Preprocessing

The oligonucleotide single channel data was normalized using the Robust Mul-
tichip Average (RMA) method [11] which consists of background correction of
perfect-match (PM) intensities, quantile normalization and summarization us-
ing the median polish algorithm. Probes were reannotated with a custom chip
description file [hugene10st Hs ENTREZG version 1.36.0 May 10, 2013 ] from
the Brainarray database [12].

For the sake of comparison of data from two different microarray platforms,
we adopted an approach where the main concern was to obtain data of the
same character, regarding the numerical as well as biological aspect. Thus, we
extracted the intensity data for separate channels and included intensities for
the patients’ samples (red or green channel) for further investigation, omitting
the information on breast cancer cell lines. This was motivated by retaining con-
sistency in terms of the biological representation of the signal, as there is no
such reference available in the oligonucleotide array experiment, and addition-
ally, the unfeasibility of juxtaposing expression values in oligonucleotide chip
data with ratios of expression from cDNA arrays. Standard normalization re-
sulting in ratios of the intensities was also performed in the separate experiment
normalization scheme for comparative purposes.
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Fig. 2. Scheme of the proposed microarray data integration procedure.

The cDNA microarrays were preprocessed with the Bioconductor Limma
package [13]. The values were background adjusted using the normexp algo-
rithm. For reasons described in the previous paragraph, within array normal-
ization was left out and between array normalization was performed with the
quantile method. This resulted in an expression set of patients’ samples in two
replicates, one for each color channel.

2.3 Data Integration

The first step of data set integration was to extract a set of genes common
for both platforms. This was done on the basis of UniGene identifiers. For the
common gene sets, the expression values were transferred to a unified scale with
the use of Empirical Bayes Methods implemented in the ComBat software for
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removal of batch effects provided in the R SVA package. Since the red and green
channel data have been filtered for batch effects, their expression was merged
as for technical replicates. For determining a signature of radiosensitivity, both
irradiated and control samples were tested.

2.4 Statistical Analysis

The genes in individual groups of irradiated and control samples were tested
for statistically significant differential expression with either of the three tests:
Student’s t-test, Welch’s t-test or U-Mann-Whitney test, depending on prior
determination of normality (Lilliefors test) and variance homogeneity (F-test).
This analysis was carried out for both types schemes: the typical separate nor-
malization of data from two experiments and the proposed here unification of
data using batch effect filtration.

Apart from considering results for the two data sets and creating a list of com-
mon differentially expressed genes, an approach reported by Liu et al. [14] was
implemented to procure combined p-values from the two experiments. Moreover,
as the data sets after applying batch effect removal can be considered numer-
ically compatible, the samples for this method have been merged into one set
and tested for differential expression.

The genes classified as differentially expressed were investigated for annota-
tions to ontologies in the GO [15] and KEGG [16] databases.

3 Results

3.1 Data Integration

In the course of this study, two expression data sets were combined to gain
numerical consistency using empirical Bayes methods for filtering batch effects.
The results of this stage of integration are presented in Figure 3.

Moreover, the data was merged so as to attain coherence in the biological
sense. For this purpose, we retained raw intensity signals in the cDNA experi-
ment for one channel - red or green referring to the patient sample and, after
batch effect removal, this information was averaged over the two dye-swap repli-
cates. Furthermore, the intersection of probes from the two biochips based on
UniGene identifiers was incorporated in subsequent research. The quantity of
genes retained at this point is illustrated in Figure 4.

3.2 Identification of Differentially Expressed Genes

Statistical testing was performed on the genes for samples normalized separately
within the two experiments as well as samples processed with batch effect filtra-
tion. These tests were carried out for the determination of differentially expressed
genes for RR vs RS patients in experiments considered independently, with the
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Fig. 3. Exemplary boxplots from each of the normalized groups of signals before and
after batch effect filtration.

9599 935810360

cDNA oligonucleotide

Fig. 4. Venn diagram illustrating the proportion of genes common for both microarray
platforms.
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combined p-values approach described in Section 2.4 and with data from the
two experiments integrated into one sample. The number of genes for control
lymphocytes is reported in Table 1, for irradiated - in Table 2.

(A) (B) (A∩B)
separate batch effect Intersection

normalization adjustment

oligonucleotide 577 577 577

cDNA 922 1093 380

Common 44 53 12

Combined p-value 115 111 29

One data set – 3146 –

Table 1. Number of differentially expressed genes at the significance level of 5% for
control samples.

(A) (B) (A∩B)
separate batch effect Intersection

normalization adjustment

oligonucleotide 633 633 633

cDNA 669 1159 289

Common 38 51 12

Combined p-value 71 100 18

One data set – 3526 –

Table 2. Number of differentially expressed genes at the significance level of 5% for
irradiated samples.

It can be seen that when integrating the data from both experiments, in most
cases the algorithm involving batch effect removal results in a larger amount of
differentially expressed genes. Additionally, the possibility of merging the ex-
pression sets into one produced notably considerable numbers of genes classified
as differentially expressed. This may have been expected when handling meta-
analysis, as increasing the number of samples enhances the power of statistical
testing, yet such discrepancy in relation to the single-study concept requires
further investigation. Another factor that clearly affected the outcome is the
single-channel approach applied to the cDNA array data for improved compara-
bility of the results.
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The differentially expressed genes common for the two studies, resulting from
combined p-values and merging the data into one set, were tested for statistically
significant ontologies in the GO and KEGG databases, using the hypergeometric
test. Ontologies and pathways were assumed to be statistically significant at the
confidence level of 95%. In general the differentially expressed genes reported in
the batch effect filtration approach were linked to a wider range of ontologies
and pathways, in particular those related to radiation induced processes that
have not been revealed when using data normalized separately.

Among others, a strong group of processes and functions pointed to the
MAPK signaling pathway which has been reported to play a key role in the
molecular background of radiosensitivity [17]. Additionally, annotations to the
radiation-related p53 regulation [18] and mTor [19] pathways occurred. Other
annotations such as cellular response to stress, apoptosis and regulation of cell
death may confirm the link between the identified genes and radiosensitivity.

4 Conclusions

Cross-studies of high-throughput genomic data constitute a valuable solution
to the problem of overdimensionality, though they hold a challenge in terms of
transformation of the expression values to achieve computational and biological
consistency. This issue becomes more complex when the design of the compared
platforms is of different nature. We established a procedure for integrated study
of data from oligonucleotide and cDNA microarrays, that enables merging of
the expression sets equivalent in the numerical form and within the analyzed
biological condition. This method has its limitations, ie. the loss of information
about features unique for either of the platforms. However, due to the raise of
statistical power after enabling data merging our investigation resulted in an
increase of information about differentially expressed genes and the additional
features have been shown to be annotated to radiosensitivity linked processes.
The validation of the presented methods on supplementary analogous data and
examination of the applicability for profile identification will be performed in
the future.
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