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Abstract. 5-alpha reductase (5α-reductase) is a microsomal protein
that converts testosterone into dihydrotestosterone (DHT). When changes
occur in the function of this enzyme, disorders such as pseudohermaphro-
ditism, baldness, benign prostatic hyperplasia and prostate cancer may
arise. Currently, there are only two marketed drugs, finasteride and du-
tasteride, for the therapy of benign prostatic hyperplasia, which have
long term side effects, stressing the need for the development of bet-
ter inhibitors. In the present study, we used a dataset of compounds
with known inhibitory activity against 5α-reductase (isozyme 2; 5α-R2)
obtained from the ChEMBL database, and employed machine learning
methods (random forests and support vector machines) to build classi-
fiers for high-throughput virtual screening campaigns to help prioritise
molecules for further analysis. The performance of the classification mod-
els was evaluated based on sensitivity, specificity, precision, F-score and
accuracy. Our results show that, overall the classification models pro-
duced by the two algorithms present similar performance. Furthermore,
the classifiers show high performance on the identification and discrimi-
nation between potent and weak inhibitors.

Keywords: Virtual screening, Machine learning, 5α-reductase, Classi-
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1 Introduction

The enzyme 5-alpha reductase (5α-reductase) is a microsomal protein that plays
a central role in human sexual differentiation. This enzyme reduces the ∆4-
double bond of testosterone by using nicotinamide adenine dinucleotide phos-
phate (NADPH) as cofactor, affording the corresponding dihydrotestosterone
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2 Predictive Models for 5α-R2 inhibitors

(DHT), which is a more potent androgen [1]. There are two isozymes of 5α-
reductase: the type 1 isoform (5α-R1) and the type 2 isoform (5α-R2). 5α-R1
is widely distributed, but it is highly expressed in subcutaneous glands of the
skin and the liver. By contrast, 5α-R2 is prevalent in the prostate, genital skin,
seminal vesicles, liver and epididymis [2]. Recently, a third isoform was identified
and designated as type 3 isoform (5α-R3). This isozyme was originally identified
in tissue of prostate cancer but was also found in other tissues, such as pancreas,
brain, skin and adipose tissues [3].

Increased activity of these enzymes may cause diseases such as benign pro-
static hyperplasia (BPH), prostate cancer, male-pattern baldness, acne and hir-
sutism [1, 4, 5]. The central role of α-reductase and their product DHT in these
disorders has triggered the development of inhibitors of this enzyme, such as fi-
nasteride and dutasteride [4–6]. Finasteride (Fig. 1, right) is a 4-azasteroid which
selectively inhibits 5α-R2, by blocking the conversion of testosterone to DHT to
reduce stimulation of the prostate. On the other hand, dutasteride (Fig. 1, left)
inhibits both 5α-R1 and 5α-R2 leading to a 95% decrease in DHT concentration
and showing improved clinical results for patients with BPH. However, the use
of these compounds in the therapy of prostate cancer remains controversial. Al-
though the incidence of cancer was reduced by treatment with these inhibitors
of 5α-reductase, in some patients more aggressive forms of cancer were detected
when compared to patients treated with placebo [6]. For this reason, further
studies for the development of new and more potent inhibitors of 5α-reductase
are required.

Fig. 1. Chemical structures of two steroidal inhibitors of 5α-reductase.

It is well recognised that the discovery of novel drugs in the pharmaceutical
industry is becoming increasingly difficult, costly and time-consuming [7–9]. In
the last decade, many approaches have been suggested to decrease the cost and
time spent in the drug discovery process, such as the use of virtual, or in silico,
screening methods to complement chemical and biological approaches. Virtual
screening involves the computational filtering of a large number of molecules to
identify those having a high probability of being active in the biological sys-
tem of interest [7–9]. Thus, a virtual screening method takes as input all those
molecules that might be acquired and tested, and then outputs those few that
should be tested. When the three-dimensional structure of the biological tar-
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get (determined either experimentally through X-ray crystallography or NMR
or computationally through homology modelling) is available, it can be em-
ployed to design new ligands or to find ligands able to satisfy the structural
requirements to form a protein-ligand complex [10]. However, this is not al-
ways the case, and in many situations the only information available is about
known inhibitors for specific targets. In this scenario, approaches such as sim-
ilarity and substructure searching, quantitative structure-activity relationships
(QSAR), and pharmacophore and three dimensional shape matching can be
applied [11, 12]. These methods work under the assumption that structurally
related molecules are susceptible to present similar properties, in particular, dis-
play similar activity. In fact, given that the crystal structure of 5α-reductase
isozymes remains unknown, mainly due to its instability during purification, the
design of 5α-reductase inhibitors has been mostly based on the knowledge of the
structure of known inhibitors, the enzyme mechanism and structure-activity re-
lationships (SAR) information ([5] and references herein). For example, Kumar
and co-workers have recently reported results on ligand-based 3D-QSAR studies
using self-organising molecular field analysis on several steroidal 5α-reductase
inhibitors to rationalise the molecular properties and their human 5α-reductase
inhibitory activities [13–16].

The recent availability of public repositories, such as ChEMBL [17] and
PubChem [18], containing both chemical structure and bioactivity information,
opened unprecedented opportunities for the application of a myriad of machine
learning methods to search for correlations between physico-chemical proper-
ties of bioactive molecules and their activity on specific target proteins [19, 20].
Recently, machine learning predictive models have been reported for different
target proteins using methods such as random forests, support vector machines,
Näıve Bayes and graph analysis, among others [21–24]. Here, we evaluate the
application of two different machine learning methods – random forests and sup-
port vector machines – to build classifiers for high-throughput virtual screening
campaigns to help prioritise molecules capable of inhibiting 5α-R2 for further
analysis.

2 Materials and Methods

2.1 Data Set

ChEMBL is a database that congregates bioactivity values (IC50, Ki, etc.) to
millions of compounds on thousands of different therapeutic targets [17]. In
ChEMBL, for 5α-R2, there are 793 values of bioactivity reported for 642 different
compounds (Table 1). For the majority of the compounds, IC50 values were
reported. All IC50 values were converted to nM.

Based on the information provided by ChEMBL, all bioactivity values for 5α-
R2 were obtained from scientific literature. All scientific papers were retrieved
based on the PubMed ID and DOI supplied by ChEMBL, and read to check for
inconsistencies in the data. Two major inconsistencies were found. Compounds
with IC50 values wrongly assigned and duplicated values. These values were
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4 Predictive Models for 5α-R2 inhibitors

Protein
Bioactivity # compounds

Total IC50 Ki Total Studied

5α-R2 793 466 102 642 354

Table 1. Description of the data set found for 5α-reductase (isozyme 2) in ChEMBL
(accessed in December 2012) in terms of the number of bioactivity values (total, IC50,
and Ki) and number of compounds (total, and studied).

removed from the data set. Additionally, many compounds had multiple IC50

values reported, in a number between 2 and 22. In such cases, after analysis of
the distribution of the values using box plots, the median value was assumed for
each of these compounds. After these pre-processing steps, the data set studied
for 5α-R2 was composed of 354 distinct compounds and corresponding IC50

values (Table 1).
Because we were interested in exploring the application of classification meth-

ods to prioritise compounds that inhibit 5α-R2, the IC50 values were converted
to IC50 classes as presented in Table 2.

Class IC50 interval # compounds

Very Good 0 – 1 107

Good 1 – 10 48

Medium 10–100 48

Bad > 100 151

Table 2. Definition of IC50 classes assignment.

2.2 Molecular Descriptors Generation

The chemical structures of the 354 compounds were downloaded from ChEMBL,
and molecular descriptors were calculated using ChemAxon’s [25] module cxcalc.
These molecular descriptors are organised in several categories: elemental anal-
ysis, charge, conformation, geometry, isoforms, Markush enumerations, name,
partitioning, predictor, protonation and others. For each compound in the data
set, we calculated a total of 40 quantitative molecular descriptors selected from
the different categories.

2.3 Classification Models

Generation of classification models and further analyses were performed using
the KNIME suite of programs [26]. KNIME provides a graphical interface to
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work the whole workflow of data analysis and integrates various components of
machine learning, such as input pre-processing, cross validation, training and
testing, and performance evaluation. Overall, there is a wide variety of machine
learning methods to perform classification tasks [27], many of which implemented
within KNIME. Here, we report the results obtained with two state-of-the-art
classifiers namely support vector machines and random forest which were trained
to build predictive models for 5α-R2 inhibitors. A general overview of these two
algorithms is provided below. The statistical method of 5-fold cross-validation,
using random sampling, was applied to allow the comparison of performance
between the two methods.

Support Vector Machines (SVM). SVM is a classification method which
is based on the construction of an hyperplane in a multidimensional space [28],
allowing objects in different classes to be differentiated. The hyperplane is posi-
tioned using the set of training examples which are known as support vectors.
The confidence level is given by the distance to the hyperplane: the greater the
distance, the greater the confidence in the prediction. In recent years, SVM has
been widely applied to build predictive models from libraries of known active and
inactive compounds [29]. Then, each new compound can be mapped to the same
spatial characteristics and its activity predicted according to which side of the
hyperplane it will be found. Although, generally applied for binary classification
problems, SVM has been generalised for multi-class problems [30]. Fig. 2 shows
the KNIME workflow for the generation and analyses of the multi-class SVM
classification models. First, the input data stored in an Excel file is read, after
which each input feature vector is z-normalised. Cross-validation is performed
using KNIME components X-Partitioner and X-Aggregator. The SVM model
training is performed using the Weka LibSVM component [31], and testing is
carried out using the Weka Predictor node. In the final step of the process, the
component Scorer is employed to generate multiple performance metrics.

Fig. 2. KNIME workflow for the generation and analyses of the multiclass SVM clas-
sification models.

Random Forests. A decision tree defines a model for decisions and their possi-
ble consequences, including probabilities of outcomes, in a tree-like graph. From
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the concept of decision tree, Breiman [32] formalised the concept of random for-
est. A random forest is a combination of decision trees, where each tree generated
is used to classify a new object, and the final decision about the class to which
the new object belongs is taken based on a majority vote. In decision trees, leaves
represent class labels and branches represent conjunctions of features that lead
to those class labels. Decision trees can be built by splitting the samples into
subsets of samples of samples based on a certain variable. This process is then
repeated on each derived subset of samples in a recursive manner [32]. The main
advantages of this method are that it is fast to compute and the results are easy
to interpret. Fig. 3 depicts the KNIME workflow for the generation and analyses
of the random forest classification models. The major difference from the SVM
workflow is that random forests, unlike SVM, are not dependent on data range
or scale, and thus data normalization is not required.

Fig. 3. KNIME workflow for the generation and analyses of the multiclass random
forest classification models.

Performance Evaluation. Several performance measures were used to evalu-
ate the classification models generated by the two algorithms. Sensitivity mea-
sures the level of positive correct prediction (Eq. 1), while specificity measures
the proportion of negatives that are predicted correctly (Eq. 2). Additionally,
accuracy (Eq. 5) accounts for the proximity of measurement results to the true
value, whereas precision accounts for the reproducibility of the measurement
(Eq. 3). The F score combines the precision measurement and sensitivity (Eq. 4).

Sensitivity =
TP

TP + FN
(1)

Specificity =
TN

TN + FP
(2)

Precision =
TP

TP + FP
(3)
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F =
2× precision× sensitivity
precision+ sensitivity

(4)

Accuracy =
TP + TN

TP + FP + TN + FN
(5)

where TP represents the number true positives, TN is the number true negatives,
FP is the number of false positives, and FN the number of false negatives.

3 Results and Discussion

In this study, we used a data set of compounds with experimentally determined
IC50 values for 5α-reductase 2 (5α-R2; CHEMBL1856) publicly available on
ChEMBL database (accessed December 2012). A total of 793 different bioactiv-
ity values were available for 641 compounds, with 466 of these bioactivity values
being IC50 values. Further analyses on the IC50 data revealed some inconsis-
tencies primarily related with incorrectly assigned values between compounds
reported by the authors and duplicated entries (the same value was presented in
different units). Additionally, some compounds presented multiple IC50 values
from which we selected the median value based on the analysis of values disper-
sion using box plots. The final data set included 354 compounds with a unique
IC50 assigned (Table 1). We considered a multi-class classification problem by
discretising the IC50 values into four distinct classes as described in Table 2.
Our purpose was to explore different groups of compounds with very diverse
IC50 values and characterised them with a large set of molecular descriptors,
and check if this setting offered the discriminative power to correctly prioritise
compounds for screening experiments.

IC50 Class
SVM Random Forests

Sens. Spec. Prec. F Sens. Spec. Prec. F

Very Good 86.9 86.1 93.9 86.5 85 85 93.5 85

Good 56.2 55.1 92.8 55.7 60.4 54.7 92.2 57.4

Medium 14.6 46.7 97.4 22.2 31.2 50 95.1 38.5

Bad 90.1 74.7 77.3 81.7 88.1 88.1 84.7 84.4

Accuracy 74.3 75.7

Table 3. Evaluation of the classification models for 5α-R2 using 5-fold cross valida-
tion. The different performance measurements: sensitivity (Sens.), specificity (Spec.),
precision (Prec.), F score (F) and accuracy are shown for SVM and random forests
learning algorithms. All values are shown in percentage (%).

Classification models were trained and tested for two state-of-the-art machine
learning algorithms – SVM and random forests –, using KNIME. All classification
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8 Predictive Models for 5α-R2 inhibitors

models were trained based on 40 molecular descriptors and the corresponding
IC50 class of 354 compounds. Both algorithms presented similar execution times.
The performance of these algorithms in discriminating compounds belonging to
different IC50 classes was evaluated using several metrics derived from 5-fold
cross-validation (Table 3). Overall, the two algorithms present similar perfor-
mance in distinguishing compounds from the different classes of IC50 (Accuracy
' 75%). Furthermore, the classifiers reveal a better performance for compounds
in IC50 classes Very Good and Bad.

Sensitivity and specificity were used to evaluate the classifiers’ ability to cor-
rectly identify if a compound belongs or not to a particular class of IC50. An
optimal prediction is obtained when sensitivity and specificity are equal to 100%.
For the IC50 classes of Very Good and Bad, the classifiers are very sensitive in
their predictions with sensitivity between 85-90%, still the SVM classifier seems
to be less specific for IC50 (' 75%). For the intermediate IC50 class Medium we
observe the larger differences between the two algorithms, in particular in what
concerns sensitivity – SVM (14.6%) and random forests (31.2%). In general, the
performance of the classifiers for IC50 classes Good and Medium is less satis-
factory as shown by the low values of sensitivity, specificity and F-score. These
results may be partially justified by the lower number of compounds in these
classes when compared to IC50 Very Good and Bad, which may have affected
the training step. In fact, the total number of compounds in IC50 classes Good
and Medium is half and one third the number of compounds from IC50 classes
Very Good and Bad, respectively. However, it is also possible that compounds
in the intermediate classes do not possess a group of characteristics (molecular
descriptors) that might easily discriminate them.

4 Conclusions

The increasing number of diseases, such as prostate cancer and benign prostatic
hyperplasia among others, mainly caused by disturbances of the function of
isozyme 2 of 5α-reductase (5α-R2) triggered the development of inhibitors of
this enzyme. However, the only two currently marketed inhibitors (finasteride
and dutasteride) cause undesirable side effects, stressing the need to search for
more potent and selective inhibitors.

The public access to bioactivity data of hundreds or thousands of chemical
compounds offers the possibility to generate machine learning predictive models
to screen molecules using in silico approaches. The aim is to employ the gener-
ated models to search large databases of chemical compounds and improve the
identification of true hits. The methodology proposed here involves the devel-
opment of machine learning workflows to generate classification models based
on the integration of experimentally determined activity data and a large set
of molecular descriptors for 5α-R2 inhibitors. We performed a comparison of
performance of two classification algorithms – SVM and random forests – and
concluded that both show an excellent performance in discriminating between
compounds with very good and bad IC50 values.
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