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Abstract. Correlations and associations between specific organism 

characteristics (such as genome size, genome GC content, optimal growth 

temperature, habitat, oxygen requirements) may provide for deeper 

comprehension of evolutionary processes as well as for some prediction 

possibilities, e.g., trends prediction of some pandemia. There is a plenty of 

genotype data and gene sequences for different organisms, which is usually 

well structured and deposited into databases. On the other side, data on 

phenotypic characteristics of organisms are often scattered across different text 

documents, e.g., scientific papers or encyclopedias. We reconsider correlations 

between organism characteristics for superkingdoms Archaea and Bacteria and 

extend the study in a number of ways. We use a larger dataset of prokaryotes 

as well as a larger set of characteristics by integrating several existing 

databases with data obtained by literature mining. We recalculate some high-

expectation correlations between genomic characteristics (genome size, GC 

content, distribution among functional groups of proteins) and apply 

algorithms for association rule mining in order to identify the most confident 

associations between specific modalities of both genotype and phenotype 

characteristics. 

Keywords. association rule mining; prokaryotes; genotype characteristics; 

phenotype characteristics 

1 Introduction 

Rapid developments in molecular biology research technologies produced, as a result, 

a huge amount of biological data that may be best analyzed using mathematical and 

computational methods and techniques. Publicly available databases (such as those 

maintained by the National Center for Biotechnology Information, NCBI [1], DOE's 

Integrated Microbial Genomes, IMG [2], or PathoSystems Resource Integration Cen-

ter, PATRIC[3]) provide information for a variety of prokaryotic genomes (both su-

perkingdoms Archaea and Bacteria). Although these databases contain different kind 

of data (both genotypic and phenotypic, such as: total genome length, number and 

length of chromosomes and plasmids, GC content, coding / non-coding sequence 

Proceedings IWBBIO 2014.  Granada 7-9 April, 2014 436



ratio, number of protein coding / non-coding genes, codon usage, HGT - number of 

genomic islands, gram staining, morphological characteristics, habitat characteristic, 

taxonomic and others), still much larger portion of such information, especially phe-

notypic ones, resides in semi-structured and unstructured forms such as encyclopedia, 

science articles, books, web pages. These kinds of resources are unsuitable for com-

puter analysis and need to be transformed into structured forms (e.g. databases). 

The overall goal is not only to analyze genomic features and their relations, but 

also relations between genotypic features and their phenotypic characteristics, as well 

as taxonomic characteristics, and to do it on a data collection as comprehensive as 

possible. These relationships provide for deeper comprehension of evolutionary proc-

esses and for some prediction possibilities, e.g., trends prediction of some pandemia, 

by interrelating the features in non-obvious ways. 

The main goal of this work is to present a convincing example of how information 

extraction from a semi-structured source can be integrated with knowledge from 

structured databases, thus enriching the data collection for mining correlations and 

associations among genomic and phenotypic characteristics of prokaryotic organisms.   

2 Related Work 

In bioinformatics, association rule mining has been used primarily in microarray and 

gene expression data analysis [4-9]. There are several studies that address the chal-

lenge of associating genotype to phenotype characteristics [10-17].  In [12] gene func-

tion is inferred from cross-organismal distribution of phenotypic traits, which is reli-

able when the phenotype does not arise from many alternate mechanisms. In [16] co-

occurrence between sets of genes and the phenotype has been investigated and asso-

ciation rule mining algorithm netCAR developed and applied in order to extract sets 

of COGs (clusters of orthologous groups of proteins) associated with a phenotype. 

MacDonald & Beiko [15] have developed a new genotype–phenotype association 

approach that uses Classification based on Predictive Association Rules (CPAR), and 

successfully compare it with the netCAR. In [17], thermal adaptation vs. structural 

disorder and functional complexity has been investigated, suggesting that adaptation 

to extreme conditions is achieved by a significant functional simplification, at both 

the level of the genome and individual genes. In [11], genotype-phenotype associa-

tions have been systematically discovered by combining information from a biomedi-

cal database GIDEON with the molecular information from NCBI COGs database. 

Korbel et al [14] reported on systematic association of genes to phenotypes by litera-

ture mining and comparative genome analysis. Coulet et al, 2008 [18] employed a 

bio-ontology for guiding data preparation for discovering genotype-phenotype rela-

tionships.  

Since biological data are often scattered across different text documents, such as 

scientific papers or encyclopedias, some of these studies include the use of literature 

mining and information extraction techniques to uncover such associations and report 

results along this line [13-14].  
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3 Materials 

Basic source of data for mining associations for organism characteristics are well 

structured databases such as NCBI database [1] (the most extensive one) IMG [2], 

PATRIC databases [3], Comprehensive Microbial Resource [19], Genome Atlas Da-

tabase [20], databases and tools for specific types of genotype-phenotype research, 

etc. Additional data sources, especially for phenotypic data, are different text docu-

ments, e.g., scientific papers, encyclopedias, scientific journals and books (e.g., [21-

24]), many of them not being digitized yet.  

For the research reported in this paper, we have used two main data sources: (i) 

NCBI Entrez Genome database [1] - an instance from 2011 (table organism_info), 

and (ii) Bergey’s Manual of Systematic Bacteriology [21-23] 

3.1 NCBI Entrez Genome Database: Table organism_info 

The table Organism_info contains 7467 isolates of 2163 different prokaryote species, 

with data (characteristics) on genome size, GC content, shape, oxygen, habitat, salin-

ity, temperature, gram stain, motility, pathogenicity. Some columns in the table are 

rather sparse, and the table is overall under half-populated. 

Genome size is the total amount of DNA contained within one copy of a genome. 

It is measured as the total number of nucleotide bases pairs (in megabases -Mb or 

Mbp). In known prokaryotic organisms genome size vary, for example, between 

10,148,695 bp for Streptomyces scabiei 87.22 (an important bacterial plant pathogen) 

to Candidatus Carsonella ruddii (an obligate endosymbiotic Gammaproteobacteria) 

with a genome of 160 000 bp [25]. Distribution of genome size in prokaryotes, calcu-

lated by Koonin and Wolf [26], clearly separates two broad genome classes with 4Mb 

border. We recalculated this distribution on superkingdoms Archaea and Bacteria and 

confirmed such classifiation in "low" size (length < 4Mb) and "high" size (length > 

4Mb) genomes. It has been demonstrated that larger genomes (more than 3 Mb) in 

free-living organisms, as a result of more complex and varied environments, show 

trend toward higher GC content than smaller ones, while nutrient limiting and nutrient 

poor environments dictate smaller genomes of low GC [27]. 

Guanine-Cytosine (GC) content (or ratio) of a genome refers to the percentage (or 

ratio) of nitrogenous bases of genome nucleic acids. It may vary between the ge-

nomes, as well as in the genome. Average GC content of bacterial genomes varies in 

range from 25% to 75%  [28].  

Habitat. Bacteria grow in a wide variety of habitats and conditions. They may be 

found on the highest mountains, the bottom of the deepest oceans, in the animals guts, 

and even in the rocks and ice [29]. Modalities for habitat, found in the database (En-

trez Genome project, Organism info - Complete genomes [1]), are aquatic, multiple, 

specialized (i.e., hot springs, salty lakes), host-associated (i.e., symbiotic) and terres-

trial. 

Oxygen requirement. Bacteria have a wide range of environmental and nutritive 

requirements. Most bacteria may be placed into one of four groups based on their 

response to gaseous oxygen. Modalities for oxygen requirement found in (Entrez 
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Genome project, Organism info – Complete genomes) database are aerobic, faculta-

tive anaerobic (facultative for short), anaerobic and microaerophilic. Aerobic bacteria 

grow in the presence of oxygen and use it as a terminal acceptor of electrons in respi-

ratory chain. Microaerophilic bacteria require lower level of oxygen than present in 

atmosphere. Anaerobic bacteria instead of oxygen use some other inorganic electron 

acceptor (sulfur, for example). Facultative anaerobe use oxygen when present, but 

may grow without oxygen. As compared to anaerobic, aerobic prokaryotes have 

shown increased GC content [29]. 

Temperature range. Bacteria grow in many environments from arctic oceans to 

hot springs. They can be classified into the following modalities: mesophile and ex-

tremophile, i.e., thermophile, hyperthermophile and cryophile (or psychrophile). A 

mesophile grows best in moderate temperature, between 15ºC and 40ºC. The habitats 

of these organisms include soil, human or animal body, etc. Thermophiles are extre-

mophilic organisms that prefer relatively higher temperatures, between 45ºC and 

80ºC. Many of them belong to Archaea. Hyperthermophiles are extreme thermophiles 

which prefer temperatures above 60ºC. Psychrophiles or Cryophiles are extremophilic 

organisms that are capable of growth in cold temperatures below 15ºC. 

Figure 1. presents statistics on the table Organism_info (number of isolates / spe-

cies with data defined for oxygen requirement, habitat, temperature range, gram stain 

and their combinations), while Figure 2 represents distribution of modalities for oxy-

gen requirement, habitat, temperature range and gram stain. 

 

 
 

Fig. 1. Statistics on the table Organism_info 
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Fig.2 Distribution of modalities: oxygen, habitat, temperature and gram stain 

3.2 Encyclopedia of Microorganisms  

The data we wanted to transform into structural form reside in the four volumes of the 

‘Systematic Bacteriology’ [21-23], in a form of descriptive, unstructured text in Eng-

lish. An example of a species description is represented in Figure 3; the underlined 

parts of this text represent the data (or attributes) we wanted to extract. 

 

Fig. 3. An excerpt form the encyclopedia ‘Systematic Bacteriology’; the underlined parts of the 

text represent the data to be extracted 
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4 Methods 

For interrelating genotypic and phenotypic characteristics we used data mining tech-

niques, specifically association rule mining [30]. For information extraction from 

semi-structured source (the Encyclopedia ‘Systematic Bacteriology’) we applied the 

two-phased method for information extraction based on finite state transducers [31].  

4.1 Association Rule Mining 

Data mining [30] is usually defined as: 

• discovering hidden information in a database; 

• non-trivial extraction of implicit, previously unknown and potentially useful 

information from database; 

• exploration & analysis, by automatic or semi-automatic means, of large quanti-

ties of data in order to discover meaningful patterns. 

Finding association rules is one of the principal methods in data mining. The 

problem is described in the following way: Given a set of transactions consisting of 

one or more elements (items), find rules that predict occurrence of an item based on 

occurrence of other items in the transaction. 

Association rules establishe relationships (associations) among data in large data-

bases, and they are of the form A→B where A and B are sets of elements represented 

in the data set. A is called body of the rule, and B - head of the rule. Implication refers 

to co-occurrence, not to causality.  

There are several measures for quality estimation of the rules discovered. The most 

often used are support and confidence. 

Support for a rule A→B, denoted by s(A→B), is defined as  

( ) ( )
N

BA
BAs

∪
=⇒

σ
 

where ( )Xσ  denotes number of occurrences of an item X in a transaction, and N is 

total number of items. 

Confidence measures how often item B occurs in transactions containing item A, 

and for the rule A→B, it is defined as 

( )
( )

( )A

BA
BAc

σ

σ ∪
=⇒  

 Support reflects frequency of set of items occurring in transactions, while confi-

dence measures how often item B occurs in transactions containing item A. We may 

now restate the problem of finding association rules: 

Given a transaction set T, the goal of mining association rules is finding all the 

rules with support ≥ minsup and confidence ≥minconf. 

The higher confidence and support guarantee the more reliable rule. But in certain 

cases an anomaly arises that both support and confidence are very high but the rule 

itself does not give a correct result. Because of that, additional measures are used to 

estimate rule's quality. One of them is Lift defined as the ratio between the confidence 

of the rule (A→B) and the support of the rule’s head (B), i.e. Lift(A→B) = 
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c(A→B)/s(B). If A and B are statistically independent, then Lift=1. In case Lift>1, A 

and B are said to be positively correlated, while in case Lift<1, A and B are said to be 

negatively correlated. In this context, positive correlation means that the element B 

(in the head of the rule) is more frequent in transactions containing A (body of the 

rule) than in transactions not containing A. Analogous holds for negative correlation. 

We applied algorithms for association rule mining from the data mining system, 

IBM Intelligent Miner. It is a part of the programming package IBM InfoSphere 

Warehouse V9.5 (and later versions). It consists of three components: Modeling, used 

for model creation, Scoring, used for testing rules applied to new data in order to es-

timate benefits, and Visualization, used for presentation of results obtained 

(http://www-01.ibm.com/software/data/infosphere/warehouse/mining.html). 

Modeling uses Apriori algorithm to "mine" association rules. Visualization en-

ables to get fast insight into the discovered business rules.  

4.2 Information Extraction 

Information extraction is a process of identifying some specific data in unstructured 

texts and assigning a semantic class or a category to them, so it can be transformed 

into a structural form. There are different methods for automatic extraction of infor-

mation. Here, we used a method based on finite state transducers (FSTs) – finite state 

machines that define relations between two sets of strings by transforming one string 

into another, which has been introduced in [32]. It extracts the relevant data from text 

segments by applying a collection of FSTs in the form of graphs, describing (most of 

or all the) possible ways a piece of information we are interested in is expressed in the 

text (corresponding to the data to be extracted). As a tool for dealing with FSTs we 

used the system UNITEX [33]. We developed the FSTs for each of the characteristics 

considered. For example, the FSTs for genome size will recognize the following text 

sequences and extract the data marked with bold characters: 

• “genome sizes of four G. oxydans strains were estimated to be between 2240 and 3787 kb” 

• “genome size of R. prowazekii is 1,111,523 bp” 

• “genome size of R. australis is 1256–1276 kbp” 

• “Genome size: 2.73 X 109 Da” 

• “genome size is 1.713 Mbp” 

• “genome size was estimated to be approximately 4061 kb” 

• “genome size of all the classical strains examined was about 3000 kb” 

The extracted data is then put into the database, which was used for further ana-

lyzes. 

5 Results and Discussion 

5.1 Mining association from the original NCBI data  

Some of the most reliable association rules mined, involving both genotypic and phe-

notypic characteristics, from the original NCBI data relate mesophilic to host-
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associated, facultative oxygen, low GC content organisms and small size genomes 

(Figure 4a). The rules mined involving phenotypic data only, cross-relate mesophilic 

with host-associated, facultative oxygen, gram positive organisms, as well as some 

multiple correlated characteristics (Figure 4b).  

 (a)  

 (b)  

 
Fig. 4. Association rules mined from the NCBI table Organism_info, involving both genotype 

and phenotype (4a) and only phenotype characteristics (4b) 
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5.2 Database – the Transformed Encyclopedia text 

As a result, after the application of the information extraction method described in 

Section 4.2., we created a database from the data extracted from encyclopedia text. 

The structure of the database is shown on Figure 5. 

 

 
Fig. 5. The database design for the encyclopedia text 

 

The database contains  2412 records in the table Species and 873 records in the table 

Genus. Numbers of extracted characteristics are as follows (respectively tables Spe-

cies - Genus): 410 - 554 for Oxygen, 485 - 738 for Gram, 711 - 190  for pH, 1616 - 

284 for Habitat, 455 - 257 for Temperature, 638 - 170 for TempRange.  

5.3 Integration of data collections  

In order to be integrated with the NCBI database, the database produced by structur-

ing the encyclopedia knowledge (specifically tables Species and Genus) had to be 

manually post-processed - biocurated, supplemented and uniformed. For example, 

species habitat, recognized from the encyclopedia text as “soil”, “fresh water” or 

“slightly and moderately acid sulfide springs having a high content of elemental sul-

fur”, had to be manually transformed into a habitat modality from the NCBI, “terres-

trial” and “aquatic”, respectively.   

Two types of data integration have been performed: vertical and horizontal inte-

gration. 

Vertical data integration. Vertical data integration consists in defining undefined 

values in columns of the NCBI database (table Organism_info). This type of integra-

tion involved replacing missing (undefined) data in the NCBI collection by values (if) 

extracted from the encyclopedia. Since the NCBI collection often contained different 

isolates of the same species, while the encyclopedia data were at the species level and 

higher (e.g., genus), extracted values replaced the corresponding missing ones in all 
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the isolates pertaining to the same species (or even genus). Integration is performed in 

two steps, thus producing a two-level approximation of organism characteristics: 

1. Missing data in the table Species, produced by extracting information from the 

encyclopedia at the species level, replaced by values extracted from the encyclopedia 

for the corresponding genera (using the table Genus) 

2. Missing data in the NCBI collection replaced by values extracted from the ency-

clopedia for the corresponding specie or genus (using the table Species modified in 

the first step) – resulting with the table Organism_info_int 

Figure 6. represents the statistics of the output of the first integration step: some 

characteristics such as oxygen requirement, temperature growth or gram stain became 

highly enriched.  

 

Fig. 6. Vertical data integration – first step: table Species supplemented by genera data 

 

Figure 7. represents statistics of the output of the second integration step: all the  

characteristics for the isolates present in the NCBI database became enriched, some of 

them up to the one third.  

 

Fig. 7. Vertical data integration – second step: table Organism_info supplemented by species / 

genera data 
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Horizontal data integration.Horizontal data integration consists in extending the 

vertically integrated data (explained in the previous section, table Organism_info_int) 

by adding new species extracted from the encyclopedia (table Species). In other 

words, the union operation on the tables Organism_info_int and Species is performed. 

Since not all the characteristics from the NCBI database (and thus the table Organ-

ism_info_int) were present in the encyclopedia (and thus in the table Species), projec-

tion onto common attributes is then performed and the table Species_int obtained.  As 

a result, an enriched set of organisms as well as the enriched set of organisms with 

defined values for oxygen requirement, habitat, temperature growth, gram stain and 

their combinations, are obtained (Figure 8). 

 

Fig. 8. Horizontal data integration: number of organisms with defined phenotypic characteris-

tics – comparison between basic data collection, vertically integrated and horizontally inte-

grated data 

5.4 Mining associations from the integrated data collections 

Some of the most reliable association rules mined from the vertically  integrated data 

(table Organism_info_int), involving both genotypic and phenotypic characteristics 

(in addition to those identified for the original NCBI data, Figure 4a), cross-relate 

host-associated organisms with facultative oxygen requirement, and relate mesophilic 

to aerobic organisms (Figure 9). Mining association rules involving phenotypic data 

only (habitat, oxygen, temperature, gram stain), from vertically integrated data (table 

Organism_info_int), confirm these cross-relations (Figure 10), but when applied to 

horizontally integrated data (table Species_int), with enriched set of organisms and 

attribute values, discard some of the less reliable and multiply related characteristics 

(e.g., between facultative oxygen requirement and multiple habitat to mesophilic or-

ganisms, Figure 11). 
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Fig. 9. Association rules mined from the vertically  integrated data (table Organism_info_int), 

involving both genotypic and phenotypic characteristics  

 

 

Fig. 10. Association rules mined involving phenotypic data only, from vertically integrated data 

(table Organism_info_int) 
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Fig. 11. Association rules mined involving phenotypic data only, from horizontally integrated 

data (table Species_int) 

6 Conclusion (and beyond) 

By integrating several data sources – structured databases and data extracted from 

different semi-structured or unstructured repositories such as scientific papers, ency-

clopedias and other books, web pages, a significant enlargement of the databases can 

be achieved. We illustrate this fact by integrating one of the most extensive prokary-

ote databases – the database of the National Center for Biotechnology Information, 

NCBI, with data extracted from the prokaryote encyclopedia Bergey's Manual of 

Systematic Bacteriology. We show that, although the most extensive, the NCBI data-

base can be significantly enlarged and enriched this way. This sort of integration is 

applicable to many other specific areas and tasks. 

The goal of this work – mining useful and novel association rules between differ-

ent prokaryote organism characteristics - was only partly fulfilled. We proved that 

data integration did contribute to the reliability of the association rules mined, which 

is rather convincing argument for the process of integration itself. On the other side, 

the association rules mined from the original NCBI database were quite modest and 

not especially novel; the same holds for mining from the integrated data source, al-

though significantly enlarged and enriched. The main reason for this is the fact that 

data in the original structured database, as well as in the integrated database is still 

rather sparse. Another reason may be the fact that association rules were not the most 

adequate analysis of relationships among the integrated data. So, the very next step in 

our work will be integration of several structured microbial databases, with richer set 

of genotypic, phenotypic and taxonomic characteristics, then integration with data 
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extracted from several different prokaryote encyclopedias, and finally – a multivariate 

analysis of the integrated data, in addition to association rule mining. 
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