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Abstract. This study aims at designing a data model managing the
vast majority of omic data types, dedicated to information retrieval on
two dimensional levels, single patient and multi-patients.
The exploitation of scientific health research data, in the search for new
biomedical applications, is a promising challenge. Data integration gen-
erated by scientific research, particularly omics, with clinical data stored
in the Electronic Health Record (EHR) can lead to significant progress in
the development of new diagnostic tests and therapies as well as improve
our understanding of complex genetic diseases and cancers.
Currently, a few solutions already exist such as i2b2 or Transmart. How-
ever, they do not handle all main omic data types. Moreover, integrating
omic analysis results in EHRs is today mandatory to help clinicians in
decision making.
This study proposes a generic omic data model dedicated to manag-
ing main omic data types (expression data, DNA-methylation, variants,
etc.), omic data representation, and information retrieval.
Integrating omics data within clinical data involves: (i) identify the dif-
ferent types of omic data, (ii) select relevant information in the context
of integration with clinical data then (iii) design an effective omic data
model.
Four levels of data have been defined according to their level of interpre-
tation. The second level representing interpreted data has been selected
to build the data model. Various omic data types have been integrated
into a database coupled to clinical data.

1 Introduction

During the past decade next generation sequencing (NGS) has become more
accessible and gradually replaced microarray techniques in laboratories. While
human genome sequencing had taken more than ten years to be completed and
cost billions dollars, today, scientists can perform genome or exome sequencing
in about a week and for less than a thousand dollars [1]. NGS techniques are
currently used to answer many biological issues at the genome scale: variations
identification, expression analysis, or even chromatin modifications. Omic data
generated by the increasing use of such techniques open up new perspectives in
the research of biomedical applications.

Currently, the medical community is facing a new paradigm in the way they
have to interact with clinical data. In fact, medical data have become more
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and more dependent on decision support tools [2]. Electronic Health Records
(EHRs) allow to manage and share all different clinical data types (e.g. dates,
numerical, boolean, chronological, etc.). A few clinical data warehouse projects
offer architecture, tools and services which permit the use of clinical data within
EHRs, especially for biomedical investigation.

To date, i2b2 (Informatics for Integrating Biology and the Bedside), a Na-
tional Institutes of Health (NIH) funded National Center for Biomedical Com-
puting based at Partners HealthCare System, is considered the most important
project. The i2b2 Center is developing a scalable informatics framework that will
enable clinical researchers to use existing clinical data for discovery research and,
when combined with Institutional Review Board (IRB)-approved genomic data,
facilitate the design of targeted therapies for individual patients with diseases
of a genetic origin. This platform currently enjoys wide international adoption
by the Clinical and Translational Science Awards (CTSA) network, academic
health centers (about 70 around the world), and industry [3]. i2b2 is a com-
monly adopted software in the scientific community, whereas i2b2 data model
does not include a single patient point of view and does not handle sequence
data.

Transmart [4] is a translational research platform based on the i2b2 data
model funded by the pharmaceutical company Johnson and Johnson and sup-
ported by a growing developer community. It enables to explore phenotypic data,
run meta-analysis, test and validate new hypotheses. However, currently, only
expression data are covered.

Since 2011, an ongoing project called Retrieval and Visualization in Elec-
tronic Health Records (RAVEL) dedicated to the development of effective and
efficient tools has permitted users to locate, in real time, relevant elements of
the patients EHR and visualize them according to synthetic and intuitive pre-
sentation models. Three academic teams (including the CISMeF team) and two
private companies are members of the RAVEL consortium.

The aim of this study was to build a specific omic data model, based on the
RAVEL clinical data model, in order to complete several tasks: (i) manage and
store the vast majority of omic data types, (ii) omic data representation allowing
specific human interface, (iii) information retrieval on two dimensional levels: one
dedicated to patient care and for several patients dedicated to epidemiology or
quality indicators. The two last tasks should improve clinical research.

2 Material and Methods

2.1 Omic data source

Omic data are coupled with reference data concerning genes, proteins and pheno-
types. Omic data have been obtained from several sources such as international
repositeries (Gene Expression Omnibus (GEO) [5], ArrayExpress [6], The Cancer
Genome Atlas (TCGA) [7]) and local collaboration.
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2.2 Reference data source

Reference data from National Center for Biotechnology Information (NCBI)
Genes for gene information and from Uniprot Swissprot/KB for protein infor-
mation were used. NCBI Genes and Uniprot SwissprotKB are two well-known
curated and comprehensive international databases. These two databases were
filtered to retain only human and human-related genes and proteins.

Phenotypes description relies upon Online Mendelian Inheritance in Man
(OMIM) compendium and Orphanet database. OMIM provides information
about genetic phenotypes and disorders. Orphanet provides information about
rare genetic orphan diseases.

Gene Ontology (GO) was also used to complete gene and protein description.

2.3 RAVEL EHR Model

The RAVEL EHR model is based on a generic EHR conceptual data model
integrated to a generic physical model, optimized for information retrieval, de-
veloped during a PhD thesis [8]. This model is focused on stays. It is composed
of eight entities among which: patients, stays, analyses, medical procedures, etc.

2.4 Data Model

The RAVEL EHR data model is based on a generic EAV (Entity-Attribute-
Value) [10] model composed of two parts: the model defining a conceptual data
model and the model instance storing the data. This model is dedicated to infor-
mation retrieval. It enables to manage heterogeneous data types. The database
management system used is Oracle 11g r2, including the partitioning option.

2.5 Omic Data Types and Levels

Designing a generic data model gathering clinical and omic data needs to estab-
lish a comprehensive and consistent review of all omic data types. Then relevant
data for integration with clinical data has to be selected. Then, some challenges
appear, including data volume and the lack of consensus on relevant information.

Four data levels to describe these data types, according to conventions adopted
by international repositeries like ArrayExpress, GEO or TCGA were used (see Ta-
ble 1). The first level corresponds to raw, not processed, data. It can be for
example Affymetrix CEL scan files from microarray experiments, or BAM (Bi-
nary Alignment/Map) files containing sequence alignment data. This data can
range from a few thousands of megabytes to several gigabytes per sample. The
second level indicates processed data by normalizing raw data, for example in
microarray experiments, this level represents normalized signals per probe per
sample. This data can represent thousands of megabytes for a single sample.
The third level fits interpreted data, resulting from the aggregation of processed
data, for example validate variants per sample. This data can represent a few
megabytes per sample. Finally level four data represents quantified associations
accross several classes of samples and subsequently various regions of interest.
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Table 1. Omic data levels

Level Type Description Example

1 Raw Low-level data for single BAM or CEL files

data sample, not normalized raw signals per probe

2 Processed Normalized single Normalized signals

data sample data per probe or probe set

3 Interpreted Aggregate of processed data Expression calls for

data from single sample genes, per sample

4 Region of Quantified associations A gene X is involved

interest across classes of samples in 10% of lymphomas

3 Results

3.1 Reference data source

Approximately (i) 9 GB data from NCBI Gene (ii) 530 MB from Uniprot/KB
and (iii) 165MB from OMIM were initially integrated. A batch program updates
this data on a daily basis.

For this study, 80% of OMIM diseases have been translated in French and
included in a health cross-lingual terminology portal [9]3.

3.2 Omic data model

The four different levels of data have been assessed to determine which data
are relevant. The first two levels of data bring together raw and processed data
which are too low-level or voluminous to be considered. This information does
not match patient level as they are neither aggregated nor interpreted. However,
the third level gathers aggregated and interpreted data like expression calls per
gene per single sample or validated variants calls. This information fits to be in-
tegrated with clinical data as they are of a high level and consistent with patient
data. Moreover, data volume and therefore storage costs are limited. Finally, the
fourth level does not correspond with a patient level but fits research purposes,
as it gathers observations across several patients and samples. Although this
level is valuable, it is not relevant in this case.

The omic data model (Fig. 1) has been designed according to level 3 data,
which is considered suitable for integration with clinical data. This model is
composed of three parts, managing (i) laboratory and study data, (ii) variants
data and (iii) expression data. Detailed managed data types are shown in Table
3.2.

3 http://www.hetop.eu
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Managing laboratory and study data. The first part of this model aims at
managing laboratory, study and submitters data. Information about laboratory
are name, code, address, e-mail and phone number. Information stored regarding
studies aims at recovering and tracking protocol, equipment, sample and genome
build used in the experiment as well as data source. This part also manages
submitters related data (names, coordonates).

Managing variants data. This part handles variant information like Single
Nucleotide variants (SNVs) and insertion/deletions (indels). For each variant,
systematic names (nucleic and proteic), reference and mutated base and codon,
variation category, localisation and involved region are stored. For each individ-
ual, detected variations and genotype status for the corresponding variation are
stored.

Managing expression, copy number variations (CNV), DNA methy-
lation data. The database contains data about genes and proteins from re-
spectively NCBI Gene and Uniprot/KB [11]. This data are used to reference
gene or protein expression data. Other analysis like DNA methylation, loss of
heterozygoty (LOH) or CNV are managed within a single entity OMI_SEGMENT.
This entity has several attributes such as the type of the genomic segment ana-
lyzed and genomic positions. Each gene, protein or generic segment is related to
a result for each patient and a reading (if applicable). Each part of this model
is linked to the clinical data model through patient entity.

Table 2. Managed omic data types

Data type Level 3 description

Structural variants Modifications by segmented region by sample

Copy number variations Copy number variations by segmented region by sample

DNA methylation Beta values by genomic region by sample

Expression: exon Normalized expression call by exon by sample

Expression: gene Normalized expression call by gene by sample

Expression: miRNA Normalized expression call by miRNA by sample

Expression: junction Normalized expression call by junction by sample

Expression: transcript Normalized expression call by transcript by sample

Expression: protein Normalized expression call by protein by sample

Variants (SNV, indels) Confirmed variants by sample
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3.3 Data integration

The TGCA portal is the only international repositery to offer wide studies with
publicly available level 3 data. Therefore, omic data (expression analyses, CGH-
array and DNA methylation data) from the TGCA portal and variants from
University of Rouen, INSERM U1079 [12] have been integrated. This data are
related to clinical data already integrated within the RAVEL clinical data model.
Approximately 1GB of data have been integrated in total, using a parser devel-
opped to integrate relevant data to corresponding patients in the database (see
Fig. 2).

3.4 Omic data visualization

A specific graphical user interface dedicated to omic data has been developped
and integrated into the RAVEL prototype, allowing to visualize and retrieve
both clinical and omic data (Fig. 3). A specific tab is dedicated to omic analysis
results, among clinical analysis results or stays dedicated tabs. All omic data
displayed are normalized, interpreted and curated data and each data table can
be filtered and sorted.

Variant data. This interface allows to visualize variants data for one patient
(Fig. 3) or several patients. Information about systematic names (nucleic and
proteic), reference and mutated base and codon, variation category, related gene,
localisation or involved region can be displayed and retrieved.

Expression, CNV, DNA methylation data. This interface allows to visu-
alize expression data (gene, protein, miRNA. . . ), CNV, CGH and DNA methy-
lation data. For each omic analysis type all the measures performed for a patient
are displayed with an interpretation and a comment.

Cross references Each analysis is linked to the related study, which informa-
tion can be consulted (title, protocol, material, submitters. . . ). For each gene,
NCBI Gene database information are available as well as Uniprot/Swissprot in-
formation are available for each protein. Information about gene and protein
are completed with the related GO annotations. Cross references with OMIM
phenotypes, Orphanet diseases or HPO phenotypes are also available within the
interface.

4 Discussion and conclusion

Although a few software solutions already exist in translational sciences to inte-
grate clinical and biological data (such as Transmart), none of them handle all
different omic data types, such as sequence data, expression data or variants.
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While there is a certain challenge to integrate different omic data types from
different kind of studies into a same data model, this type of model would in-
terest both clinical research and care. Indeed, gathering clinical and omic data
could lead to innovative applications i.e. new diagnoses tests or targeted thera-
pies. Moreover, this could bring a decisive progress about our understanding of
complex genetic diseases and mecanisms involved in cancers.

The omic data model proposed in this study handles the most common omic
data types. It has been tested with several omic data types from different omic
studies. Data from expression analysis (gene, proteins and miRNAs), cgh-array
and DNA methylation analysis have been successfully integrated. Moreover,
about 25,000 variants, including SNV and indels have been also successfully
integrated in an Oracle database implementing the described data model. How-
ever, variant data has been extracted from only one study, due to the lack of
available data.

While the reference solution i2b2 is widely adopted in both academic com-
munity and industries, this model brings some decisive advantages. In fact, this
omic data model within RAVEL clinical data model is able to manage many
data types (numeric, dates. . . ) and is highly extensible and adaptable to future
new omic data. Based on this model, the graphical user interface is dedicated to
data visualization and retrieving. This interface allows to retrieve both clinical
and related omic data. Moreover, the combined search engine currently devel-
opped in RAVEL project handles logic operators able to manage numeric data
(<, >, =) and keywords handling chronological queries. This search engine can
process both multi-patients queries and one-patient queries including querying
at patient and stay levels, whereas i2b2 handles only multi-patients queries.

It could be also interesting to determine a standard for level 3 data, based on
HL7 RIM V3. Such a standard will be essential to industrialize this solution. Fi-
nally, this solution warrants further assessment and confirmation with a dataset
containing both clinical and omic data.
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Fig. 1. Simplified omic data model
This omic data model is composed of four parts: (i) a first part, in grey, is dedicated
to information about omic studies, laboratories and study submitters, (ii) the green
part handles information about variants, SNVs and indels, (iii) the blue part handles
information about expression analysis (arrays or RNAseq), copy number variations
and DNA methylation studies and finally (iv) the yellow part represents patients data
within the RAVEL clinical data model (not shown here). The detailed model can be
consulted at http://www.chu-rouen.fr/cismef/papers/omic mld.pdf.

Omic data set

DatabaseSingle XML file

11 Python script 12 Java parser

Fig. 2. Omic data integration workflow
(1) Omic data sets are usually composed of tabulated text files, one file corresponding
to a patient’s analysis results. A set is converted into a single XML file, following a
XML schema (XSD) which matches the omic data model. (2) This single XML file
is then parsed to integrate data in the database using a specific parser developed to
process XML files conforming to the given XSD schema.
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Fig. 3. Screenshot of the RAVEL prototype showing the omic data dedicated tab,
including all omic results for a patient
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