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Abstract. In this study, a novel regularized common spatial pattern
method is introduced. Spatial filtering is an important processing step
for feature extraction in motor imagery based brain computer interfaces.
Common Spatial Patterns (CSP) method is an effective spatial filter
for discriminating different motor imagery signals acquired using large
number of EEG electrodes. Unfortunately, CSP method is sensitive to
nonstationery sources like artefacts and noise, which cause overfitting. In
the literature, some regularization methods developed in order to avert
overfitting and generate filters that are less sensitive to noise. In this
study, we present a method that regularizes CSP filters by taking care of
physiological sources of executed motor imagery tasks and spatial rela-
tions between electrodes. We compared our method to well known CSP
methods on a publicly available EEG dataset by calculating classify-
ing performances and analyzing the effect of regularizing CSP visually.
Results show that proposed method gives the best overall performance
among six CSP methods.

Keywords: Brain Computer Interfaces (BCI), Motor Imagery (MI),
EEG, Common Spatial Patterns (CSP), Regularization

1 Introduction

Brain Computer Interface (BCI) is a communication alternative between user
and system where user does not need to use his brain muscular pathways for
controlling an external device [1]. Since it is a direct communication method with
brain and outer world, BCI system emerges a useful communication and control
method for severely paralyzed people. In such a system, user should generate
different signal (usually EEG) patterns with his brain for different commands.
Moreover, discriminating these brain patterns and translating them to control
commands for an electronic device is the most important part of the BCI system.

In motor imagery based BCIs, users motor intentions are extracted by an-
alyzing multi channel EEG signal. In such system, users imagery of moving a
limb is decoded into device control commands. The first motor imagery based
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BCI design developed by Pfurtscheller et al. [2] analyzed EEG power changes
during imaging of left and right arm movements.

A focal power decrease in a specific frequency band, called event related
desynchronization (ERD), can be observed over the motor cortex during motor
imagery [3, 4]. In 1937, Penfield and Boldrey studied on organization of motor
cortex in human brain [5]. According to this study, any muscle group has a
specific area on the motor cortex. By comparing the size of each of the areas on
the motor cortex, homunculus figure was created (See: Figure 1).

Fig. 1. Human motor cortex and homunculus [6]

Due to the topographical organization in motor cortex, different motor im-
agery tasks can be identified by their specific spatial location of related ERD
rhythms [7]. However, due to the volume conduction effect, scalp EEG signal
recorded from a specific area involves a mixture of several cortical sources located
in different areas. Thus, raw scalp EEG potentials have poor spatial resolution
[7]. For the purpose of eliminating the volume conduction effect and reaching
the actual underlying signal sources, spatial filtering step is an indispensable
technique [8].

Common Spatial Pattern (CSP) is a very popular and powerful spatial fil-
tering method used in motor imagery EEG classification [9]. When using band
power features, CSP computes spatial filters by aiming optimal discrimination
between two classes [10]. CSP finds optimal spatial filters which maximize the
variance ratio of two different classes. A computed CSP spatial filter projects
multi dimensional EEG time domain signal to one dimensional signal in which
the power of one class is maximized while power other class is minimized. Un-
like PCA, CSP takes care of two classes at the same time and simultaneously
diagonalize the covariance matrix of each class [11]. Moreover, CSP algorithm
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was proven to be efficient in BCI competitions [12, 13]. Although CSP is a pow-
erful technique, with simplicity, it has some drawbacks. Due to its optimization
function which tries to maximize the ratio of variances, CSP algorithm is very
sensitive to outliers which cause over fitting [14]. Recently, some methods called
regularized CSP (RCSP) have been proposed which aims computing more robust
spatial patterns by add a regularization term to the CSP formula [8, 15, 10].

In this paper, we present a regularization method for CSP, called ”Task re-
lated & spatially regularized common spatial patterns (TR&SR-CSP). Proposed
method unifies prior information about executed motor imagery tasks and spa-
tial locations of EEG channels. We tested our algorithm along with existing
(regularized) CSP algorithms. Moreover, we visualized generated filters on the
head model and show the effect of regularization.

The remainder of this study is organized as follows: In Section II, standard
CSP method is briefly reviewed. In Section III, regularization framework and
proposed TR&SR-CSP method with existing regularization methods are de-
scribed. Section IV informs about motor imagery data set used in the study and
EEG preprocessing routine, summarizes the evaluations and results of the study.
Finally, Section V concludes the paper.

2 Common Spatial Patterns

CSP is used widely technique in order to have a good spatial resolution and dis-
criminate between different motor imagery signals. Generally, a motor imagery
experiment consists of epochs, in which the user imagines one kind of motor im-
agery task requested on the screen. An epoch can be one of the two classes: C1

and C2. (i.e. left hand - right hand). Let XC,i ∈ RNxT represent an epoch, where
C is the class of epoch and i is the epoch number belonging to class C, N is the
number of EEG channels and T is the number of samples in the epoch. Note
that XC,i should be a zero average signal (i.e. band pass filtered). Let w ∈ RNx1
be a vector in N dimensional space. A projection of an epoch onto this vector
will be

yC,i = wTXC,i (1)

where yC,i ∈ R1xT denotes the projection of epoch XC,i and T is the trans-
pose operation. Projected signal power PC,i can be written,

PC,i = yC,iy
T
C,i = wTXC,iX

T
C,iw (2)

let RC,i ∈ RNxN be the covariance matrix of band pass filtered signal XC,i

and RC ∈ RNxN be the average covariance matrix of class C:

RC,i =
XC,iX

T
C,i

tr(XC,iXT
C,i)

RC =
1

nC

nC∑
i∈C

RC,i (3)

where tr is the trace function and nC is the number of epochs in C. let
average power of class C be PC . Then, PC is calculated as below:
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PC =
1

nC

nC∑
i∈C

wTXC,iX
T
C,iw =

1

nC

nC∑
i∈C

wTRC,iw = wTRCw (4)

For two classes (C = 1, 2) case, CSP seeks for the maximum power ratio of
the classes on the projected w axis. Thus, average power of one class is maxi-
mized while that of other class is minimized. In other words, spatial filter should
maximize the following Rayleigh quotient problem [10]:

arg max
w

wTR1w

wTR2w
(5)

for any w that maximizes equation (5), denominator can be set to a constant
value c by a scalar coefficient without changing the ratio.Thus, maximization
of the Rayleigh quotient can be retranslated into a constrained optimization
problem:

maximize wTR1w, subject to wTR2w = c (6)

above constrained optimization problem can be solved by Lagrange multiplier
method [16]:

L(λ,w) = wTR1w − λ(wTR2w − c) (7)

∂L(λ,w)

∂w
= 2wTR1 − λ(2wTR2) = 0 (8)

where λ is Lagrage multiplier. Since RC is a symmetric matrix, above equa-
tion can be written as a standard eigenvalue problem:

(R2
−1
R1)w = λw (9)

According to Equation (9), w, which maximizes the Rayleigh quotient is the

eigenvector corresponding to the largest eigenvalue of (R2
−1
R1).

CSP spatial filter WCSP ∈ RdxN matrice is constructed by taking d = 2m
(d ≤ N) eigenvectors corresponding to the m largest and m smallest eigenvalues:

WCSP = [wλ1 , ...wλm ......wλN−m+1
, ...wλN

]T (10)

where wλi
is the eigenvector corresponding to the eigenvalue λi. Any epoch

XC,i is spatially filtered by,

ZC,i = WCSPXC,i (11)

where ZC,i ∈ RdxT is the spatially filtered signal. Band power (variance) is
used as feature for classifier. For an epoch i, CSP feature vector is given by

fcspkC,i = log(
var(ZkC,i)∑2m
l=1 var(Z

l
C,i)

) k = 1, 2, ...d (12)
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where fcspkC,i is the kth feature of feature vector fcspC,i ∈ Rdx1 that belongs to

epoch i and ZkC,i is kth row of ZC,i. Here, logarithm of variance ratio is calculated
in order to approximate the distribution of the features to a normal distribution
[11]. Next, features are used for training a linear classifier.

3 Regularized Common Spatial Patterns

CSP should be regularized in order to overcome its sensitivity to noise and over
fitting [15]. Regularization of Rayleigh quotient given in Equation (5) is done by
adding a penalty term to denominator. In this case, one should maximize spatial
filters for each class seperately,

w1 = argmax
w

wTR1w

(1− α)wTR2w + αwTK1w
(13)

w2 = argmax
w

wTR2w

(1− α)wTR1w + αwTK2w
(14)

where w1 and w2 are the spatial filters maximizing the variances of class 1
and 2 respectively. α is user defined regularization parameter to set the effect of
penalty term. K1 and K2 are NxN penalty matrices. There are many variants
about computation of K matrices in the literature. In the following subsections,
five regularized CSP variants with proposed regularized CSP method will be
reviewed.

3.1 Tikhonov Regularized CSP

In Tikhonov regularized CSP (TRCSP) [15],K matrices are set to identity matri-

ces so that penalty term is equal to wT Iw = wTw = ‖w‖2 Thus, solutions with
large weights are penalized. TRCSP is expected to generate filters with small
norm hence reducing the effect of artifacts and outliers. Note that, TRCSP pe-
nalizes all channels equally, a channel with highly motor imagery related activity
may be penalized. However, there should not be a penalty if it contains useful
information.

3.2 Weighted Tikhonov Regularized CSP

In TRCSP, each channel are penalized equally. However, it is known that some
channels is more important than others. In Weighted Tikhonov Regularized CSP
(WTRCSP),

K = diag(u) (15)

where u is a coefficient vector and diag(u) is the diagonal matrix of u which
has the information of the penalty level of each channel [15]. Since manual selec-
tion of u is not easy, it is computed by using the data from other test subjects:

Proceedings IWBBIO 2014.  Granada 7-9 April, 2014 46



6 Yuksel and Olmez

u =

 1

2Nf |Ω|
∑
i∈Ω

2Nf∑
f=1

∣∣∣∣∣ wi
f

||wi
f ||

∣∣∣∣∣
−1 (16)

where wi
f is the f th spatial filter of subject i and 2Nf is the number of spatial

filters used for each subject. Shortly, in WTRCSP penalty of each channel is
adjusted by looking at other subjects. If average absolute value of the normalized
weight of a channel is large in the CSP filters of other subject, penalty term
assigned to this channel is small. This method needs more than one subjects
in order to create a penalty function. Also, spatial filters of one subject can be
contaminated by the outliers and noise in other subjects.

3.3 Invariant CSP

Invariant CSP (iCSP) method uses non task related EEG signal for building
filters invariant to a given noise source [8]. Blankertz et. al. used disturbance
covariance matrices from fluctuations in visual processing, parietal α-activity
and used these covariance matrices as regularization matrices. Note that, there
should be additional EEG measurements to compute the covariance matrix. For
example, Samek et.al [10] recorded an extra session consisting of different eye
movements,namely eyes open, look left, look right, look up and look down to
generate an average covariance matrix K. Then adding wTKw as penalty term
results in spatial filters which are invariant against changes generated by eye
movements.

3.4 Spatially Regulaized CSP

Spatially regulaized CSP (SRCSP) (see Lotte and Guan [15]) deals with spatial
relations between EEG channels. Normally CSP ignores positions and spatial
relations of EEG electrodes. SRCSP method utilizes the information that neigh-
boring neurons have similar functions, so that neighboring electrodes should
measure similar brain signals. SRCSP method penalizes solutions with non-
smooth filters in which spatially close electrodes should be similar weights in
CSP spatial filter.

SRSCP uses the following regularization matrix K:

G(i, j) = exp(−1

2

||vi − vj ||2

r2
) (17)

K = DG −G (18)

where vi is the position vector of ith electrode, DG is a diagonal matrix
such as DG =

∑
j G(i, j) and r is a hyper parameter representing the maximum

distance between two electrodes. SRCSP uses spatial information about elec-
trode channels but ignores about penalizing the channels with non-task-related
information.
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3.5 Stationary CSP

Stationary CSP (sCSP) extends CSP to be invariant to non-stationaries in the
data and regularizes CSP towards stationary subspaces. sCSP aims reducing the
variations of the extracted features since it is assumed that variations like non-
stationeries are the results of non task-related processes such as eye movements
and electrode artefacts. sCSP penalizes the solutions with large variations in
spatially filtered EEG data by analyzing training epochs. Generally, sCSP tries
to minimize the following term in each class c:

Dc(w) =
∑
k

|wTR(k)
c w −wTRcw| (19)

where R
(k)
c is the kth trial of class c and Rc is the average covariance matrix

of class c. For more information see the work of Samek et. al. [10]

3.6 Task Related & Spatially Regularized CSP

In this study, Task Related & Spatially Regularized CSP (TR&SR-CSP) is pro-
posed. As mentioned before, each muscle group has a special area on the motor
cortex, which supports the idea that each motor imagery task activates a special
area on the motor cortex. We aim a regularizing method which emphasizes the
electrodes that are spatially close to the center of imaging task being executed.
TR&SR-CSP method regularizes the CSP spatial filter by directing it towards to
center electrodes, which is assumed to record task-related signals. This is realized
by penalizing the filter weights which are assumed as non-task related compo-
nents with their spatial location. TR&SR-CSP designs regularizing matrices as
below:

KC(i, j) =

{
1− exp(− ||vi−vc||2

r2 ), i = j

0, i 6= j
(20)

whereKC is the regularizing matrice of class C, vi is the spatial location of ith

electrode, vc is the electrode which is assumed to be the center electrode of task
related signal and r is a hyper parameter representing the maximum distance
between two electrodes. Note that in TR&SR-CSP, regularizing K matrix is
different for each class. Also spatial smoothness of filter is ensured by exponential
function. Figure 2 illustrates penalty matrices on scalp figures with topographic
maps. Diagonal values of K matrices for the two tasks (left hand and foot) has
been plotted.

Despite similarities to SRCSP and WTRCSP, TR&SR-CSP method differs
from SRCSP by incorporation of task relevant information when computing
K. WTRCSP ignores spatial relations between electrodes but obtains a general
spatial filter by analyzing data from other subjects, while TR&SR-CSP builds its
regularizing matrices by using the information in the literature about mapping
motor cortex and taking account of spatial relations between electrodes.
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Fig. 2. Illustration of penalty values for left hand and foot (r = 0.3)

4 Evaluation

4.1 EEG Data Set Used

In this study, we used a publicly available EEG Motor Imagery data set, BCI
competition III Data Set IVa [13]. This data set involves EEG recordings of 5
subjects who performed motor imagery of right hand and foot. 118 electrodes
were used for recording EEG with the sample rate of 100Hz. There are 280 trials
for each subject. However, number of training and test sets differ for each subject:
168, 224, 84, 56 and 28 trials are sizes of the training sets for subjects labelled
as aa, al, av, aw and ay respectively and remaining trials form the test set. We
used EEG electrodes which roughly cover the motor cortex, totally 68 electrodes
were used (F*, FFC*, FC*, CFC*, C*, CCP*, CP*, PCP*, P*, PPO* and PO*,
with numbers higher than 6 according to the International 10-20 system are
discarded) as done in [10].

4.2 Preprocessing, Hyper Parameters and Classification Method

For each trial in the data set and for each CSP method used in evaluation, we
applied the same preprocessing steps. i) EEG signal is band bass filtered with
0.5 - 30 Hz 5th order Butterworth filter. ii) For each trial, we used EEG signals
in time segment between 0.5s - 2s after instruction cue. iii) Three spatial filter
pairs were used (m = 3) as recommended in [7]. In TR&SR-CSP method, center
electrodes are selected as C3 and CZ for right hand and foot motor imageries,
respectively. For hyper parameters, values were selected from the sets [0.01,
0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75] for α and [0.1, 0.25, 0.5, 0.75, 1, 1.25, 1.5]
for r. The parameter values which maximize the 2-fold cross-validation accuracy
for the training set were selected as optimal hyper parameters. All covariance
(RC) and regularization (KC) matrices were normalized by dividing them by
their traces. For stationary CSP (sCSP) method, we compute the covariances for
single trial period (i.e., chunk size (ν) was set to 1). We used Linear discriminant
analysis (LDA) as classifier.
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4.3 Performance Comparison

We tested TR&SR-CSP method along with conventional CSP method described
in Section 2 and other regularizing methods in Section 3. Note that we couldn’t
test iCSP method because it requires an additional EEG measurement session.
Table 1 shows the average error rates of CSP, TRCSP, WTRCSP, SRCSP, sCSP
and TR&SR-CSP methods for the BCI Competition III Data Set IVa. Accord-
ing to the results, TR&SR-CSP method outperforms other algorithms. TR&SR-
CSP improved standard CSP algorithm except subjects al and aw. For those
subjects, TR&SR-CSP algorithm performs similar to CSP. The largest improve-
ment achieved for subjects av and ay. Subject av has lower classification per-
formance with all of the methods. This can be because of low signal-to-noise
ratio and artefacts for av. Subject ay has small training set (56 trials) which
causes CSP to over fit. Since TR&SR-CSP method leads spatial filters towards
to motor cortex area defined by physiological facts, performances of av and ay
are improved.

Table 1. Classification error rates for each subject in BCI competition III Data Set
IVa for classical CSP and regularized CSP algorithms. The best result for each subject
is given in bold.

SUBJECTS OVERALL

Method AA AL AV AW AY Mean Med. Std

CSP 26.8 1.8 32.7 20.5 25.8 21.5 25.8 11.8
TRCSP 30.9 1.8 32.7 26.7 17.9 22.0 26.7 12.7
WTRCSP 22.1 1.8 33.0 23.5 16.2 19.3 22.1 11.5
SRCSP 31.9 4.6 34.5 29.6 19.0 23.9 29.6 12.3
sCSP 26.0 1.8 35.7 18.2 27.9 21.9 26.0 12.9
TR&SR-CSP 20.7 1.8 26.9 20.6 13.0 16.6 20.6 9.6

We also tested the performance of our method with Wilcoxon Signed-Rank
Test. We ran each method 30 times for each subject. In Table 2, TR&SR-CSP
method and other methods are compared one by one. The null hypothesis H0 for
this test is: There is no difference between the median of performance obtained
by method A and the median of performance obtained by method B for same
benchmark problem, To determine whether method A outperforms method B
when the null hypothesis fails, the sizes of the ranks provided by the Wilcoxon
Signed-Rank Test (i.e. T+ and T- as defined in [17]) were examined. In Table
2, ’+’ indicates TR&SR-CSP is better (p < 0.05 and T+ < T−), ’=’ is indicates
there is no statistical difference between those two methods (p >= 0.05) and
’-’ indicates opponent algorithm is better than TR&SR-CSP (p < 0.05 and
T+ > T−). The last column of the table shows the total count of (+/=/-) signs
for each subject.

We also illustrate the effect of regularizing on the spatial filters. To this end,
channel weights of the most important spatial filter of each class (i.e. first and
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Table 2. Wilcoxon signed rank test at the %95 significance level for comparison of
TR&SR-CSP and other CSP methods

TR&SR-CSP vs AA AL AV AW AY SCORES

p 0.000 1.000 0.000 0.577 0.000
CSP T + /T− 0 / 465 0 / 0 0 / 465 183 / 142 0 / 465

winner + = + = + 3/2/0

p 0.000 1.000 0.000 0.000 0.000
TRCSP T + /T− 0 / 465 0 / 0 15 / 450 0 / 465 0 / 465

winner + = + + + 4/1/0

p 0.000 1.000 0.000 0.000 0.000
WTRCSP T + /T− 21 / 330 0 / 0 33 / 374 17 / 449 0 / 465

winner + = + + + 4/1/0

p 0.000 0.000 0.000 0.000 0.000
SRCSP T + /T− 0 / 465 0 / 136 3 / 404 0 / 465 0 / 465

winner + + + + + 5/0/0

p 0.000 1.000 0.000 0.000 0.000
sCSP T + /T− 0 / 465 0 / 0 3 / 462 438 / 28 0 / 465

winner + = + - + 3/1/1

last rows of WCSP ) are topographically mapped onto a scalp and colorized (white
to black). Figure 3 shows spatial filters obtained by different CSP algorithms by
interpolating the whole scalp by using the weights at the corresponding electrode
positions. Note that figures illustrate the absolute values of the weights, sign
of each weight is ignored. CSP and other RCSP filters are complicated and
have peaks at unexpected locations while spatial filters obtained by TR&SR-
CSP method physiologically more relevant, with stronger weights over the motor
cortex area relevant to task being executed [5]. This suggests proposed method
has the ability to produce more generalized filters and avoids obtained spatial
filters being over fitted.

5 CONCLUSION

In this paper, we proposed a new Regularized CSP method named TR&SR-
CSP. We revisited conventional CSP algorithm and existing RCSP algorithms.
We evaluated 6 different CSP methods (1 CSP method, 4 other RCSP methods
and 1 proposed TR&SR-CSP method) on the BCI competition EEG data from 5
subjects [13]. Results show that TR&SR-CSP method clearly outperforms other
methods. We also illustrated the spatial filters on a scalp map with color coded
and topographically mapped. Proposed methods physiological plausibility can
be clearly seen in these figures. Future works could test our method on more
databases and new EEG motor imagery task experiments. Proposed methods
generalizing capability suggests minimal user training, it could be also investi-
gated with small training sets. Also we could adapt our algorithm to multi class
cases.
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CSP TRCSP WTRCSP

26.8 25.9 19.6

SRCSP sCSP TR&SR-CSP

24.1 26.8 16.1

Fig. 3. Illustration of CSP filters for subject aa. Upper and lower rows represent the
first and second MI tasks, respectively. Hyper parameters are α = 0.05 and r = 1.
Error rates for each method are given at the bottom.
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