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Abstract. Molecular docking can be reasonably successful at reproduc-
ing X-ray poses of a ligand in the binding site of a protein. However,
scoring functions are typically unsuccessful at correctly ranking ligands
according to their binding affinity. Using cyclooxygenase-1 (COX-1), a
particularly challenging workhorse in virtual screening (VS) we show
how the use of support vector machines (SVMs), trained with the indi-
vidual energy terms retrieved from docking-based VS experiments, can
improve the discrimination between active and inactive compounds. Ac-
tives and inactives for COX-1 were obtained from the Directory of Use-
ful Decoys (DUD) and docked into COX-1 with AutoDock Vina (Vina).
The energy parameters of Vina’s scoring function were used to train
classification models with SVM-light. The results show that Vina offers
acceptable pose prediction accuracy, but its scoring function performs
poorly compared to our SVM classification models. The superior per-
formance of the trained classification models highlights the potential of
using non-linear machine learning methods to identify bioactive com-
pounds through docking-based screening.
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1 Introduction

Virtual screening (VS) of compound libraries has become a commonly-employed
methodology in modern lead discovery [1, 2]. The goal of VS is to prioritise com-
pounds for biological evaluation by using computational tools and information
on the protein target (receptor-based VS) and/or known active ligands (ligand-
based VS). Amongst the receptor-based methods used for VS, molecular docking
is the most prominent [3]. In molecular docking, small compounds are docked
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2 Discriminating Between Ligands and Decoys in Virtual Screening

into a particular target and ranked according to their predicted binding affin-
ity or complementarity to the binding site. At a basic level, the process can
be dissected into two main stages: conformational search and scoring. First, a
search algorithm samples the degrees of freedom of the compound:protein sys-
tem to include the true binding mode(s). A scoring function attempts to score
the allowed interactions in each conformation and thus distinguish the correct
binding mode(s) from all configurations explored [3]. The scores may assume
different forms according to the chosen scoring function. For example, a Gibbs
free energy difference is typically output by force field-based scoring functions.
The strongest scores for each compound are then used to rank the entire library
and thence select top compounds for experimental validation.

Although docking can be reasonably successful at reproducing ligand poses
determined by X-ray crystallography, scoring functions are normally unsuccess-
ful at correctly ranking compounds according to their binding affinity. Ideally,
compounds that bind tightly and receive stronger docking scores should be more
likely to be truly active, which is rarely the case [4, 5]. Strategies to overcome
this problem have included the use of consensus scoring methods, combining
different scoring functions into a single prediction, thus taking advantage of the
different capabilities of the various types of scoring functions [4]. However, evi-
dence of the success of these methods is still missing. In most scoring functions,
a set of weights is assigned to the individual terms that build up the over-
all score. Force-field based scoring functions, in particular, traditionally assume
that individual interactions contribute toward the total binding affinity in an
additive fashion, thus deriving their predictions from a linear combination of
individual energy terms. This method fails to consider the cooperative effects
of non-covalent interactions, which only recently have been acknowledged [6, 7].
Therefore, if reasonable outcomes are to be expected, the scoring function must
be trained non-linearly to derive a specific set of weights in a target-dependent
manner. In recent years, machine learning methodologies have been increasingly
applied to the computational identification of active compounds and have be-
come a viable alternative to conventional approaches [8–11]. In fact, there are
examples of their use to derive knowledge-based scoring functions [8, 12]. Inspired
by such works, we propose the integration of support vector machines (SVM) in
the context of docking-based compound screening to improve the discrimination
between active and inactive compounds.

Using cyclooxygenase-1 (COX-1) as case-study, we demonstrate that the use
of SVM trained with the individual energy terms retrieved from docking with
AutoDock Vina can enhance the ranking of active inhibitors of COX1 over a
subset of carefully selected decoys. Vina is a very fast docking program that
employs a simple force field-based scoring function, rendering it a suitable choice
for this work. Cyclooxygenase (COX) is a membrane-bound enzyme which exists
in two isoforms: COX-1 (Fig. 1, left) is constitutively expressed in most cells
and tissues; COX-2 is inductively expressed to mediate inflammation [13]. Most
non-steroidal anti-inflammatory drugs (NSAIDs, Fig. 1, right) are non-selective
because they inhibit both COX-1 and COX-2. Inhibition of COX-1 leads to side
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Fig. 1. Left. A ribbon representation of the ovine COX-1 dimer structure (PDB ID
1Q4G [16]) showing the binding site for 2-(1,1’-biphenyl-4-yl)propanoic acid (BFL)
(blue), and the putative position of the lumenal leaflet of the ER bilayer. Right.
Example of NSAIDs known to inhibit COX-1 activity.

effects commonly associated to NSAIDs, such as stomach ulcer. The development
of selective NSAIDs, is therefore a long-sought goal and the development of
models and methods to predict (and thus avoid) inhibition of COX-1 is a worthy
effort.

2 Materials and Methods

Data Set. COX-1 actives and inactives were extracted from the Directory of
Useful Decoys (DUD) [14]. DUD comprises data sets of active and inactive com-
pounds for 40 diverse protein targets. For each active, 36 inactives were chosen
based on the similarity of their physical properties compared to the actives while
still being topologically distinct, making this a challenging test set. A set of 25
actives and 911 inactives is available for COX-1. Of the 911 inactives, 62 were ex-
cluded as these were redundant entries (the same inactive was related to multiple
active compounds). Thus, a total of 25 actives and 849 inactives were considered
in the analysed data set.

Molecular Docking (Pose Prediction). Each compound in the data set was
docked into the structure of COX-1 using AutoDock Vina (Vina) [15]. Polar
hydrogen atoms were added to the protein using Autodock Tools. In general,
the docking parameters were kept to their default values. The targeted site in
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the docking calculations was defined by the position of the 2-(1,1-biphenyl-4-
yl)propanoic acid (BFL) molecule observed in complex with COX-1 (PDB ID:
1Q4G [16]). A docking box of 18Å×18Å×20Å and centered in point (x,y,z) =
(26.6, 33.8, 201.5) was defined. The docking runs were carried out to generate
a maximum of 15 poses per compound with a maximum energy difference of 10
kcal/mol.

Pose Prediction Accuracy. The performance at pose prediction was as-
sessed through redocking (a.k.a. self-docking) experiments, by calculating the
root mean spare deviation (RMSD, Eq. 1) between the predicted poses and
the native pose of the co-crystallised ligand in COX-1 complexes. Six complexes
were available in the PDB [17] (http://www.rcsb.org) with the following ligands:
BFL (1Q4G); diclofenac (3N8Y); flurbiprofen (3RR3); indomethacin (4COX);
naproxen (3NT1), and salicylic acid (1PTH; 3N8Y).

RMSD =

√∑Natoms

i=1 (X1,i −X2,i)2 − (Y1,i − Y2,i)2 − (Z1,i − Z2,i)2

Natoms
(1)

SVM Classification Models. Vina output provides five different energy terms
that contribute to the overall energy score: gauss1, gauss2, repulsion, hydropho-
bic, hydrogen bonding. SVM-light [18] was used to train a classification model
where each molecule was labeled as either active (+1) or inactive (-1), based on
the classification provided by DUD, and assigned with a z-normalised feature
vector with Vina energy terms.

Given that training data originated from DUD data sets presents a strong
bias toward negative examples (1 active: 36 inactive), which may be adequate for
testing but not training purposes, a multiple-planar classification model has been
proposed [11] to overcome this problem, and is summarised here. After randomly
dividing the active and inactive compounds into three subsets for the 3-fold cross
validation, each of the three subsets of inactives was randomly partitioned into
n subsets, with n ranging from 5 to 36. Thus, for each iteration of the 3-fold
cross validation, n models were trained using a different subset of inactives.

For each compound in the test set, the n models predicted a score value. A
consensus vote was assigned to each compound based on the sum of the n scores.
If the sum of the n scores was greater than zero, the compound was predicted
to be active, otherwise the compound was predicted to be inactive. The F score
(Eq. 2) was then calculated for each of the three iterations as

F =
2× precision× sensitivity

precision + sensitivity
(2)

where precision is the number of true positives divided by the total number of
predicted positive results, and sensitivity is defined by equation 4.

The mean F score was assigned to that particular value of n. The optimal
number of partitions (n) was decided based on the best mean F score value.
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Performance Evaluation. The performance of Vina scoring function and the
SVM classification models in discriminating between active ligands and decoys
of COX-1 was assessed using two different metrics: enrichment factors (EF) and
the area under the Receiver Operator Characteristic (ROC) curves [19]. While
enrichment factors measure how many more active compounds are found within a
defined “early recognition” fraction of the ranked list in comparison to a random
selection, the area under the ROC curve (AUC ROC) provides a measure of the
overall performance of the methods applied [19–21].

The enrichment factor (EF) is defined as

EF x% =
nx%
a /Nx%

na/N
(3)

where nx%
a is the number of actives found at top x% of the database screened,

Nx% is the total number of compounds screened at top x% of the database, na

is the total number of actives in the data set, and N is the total number of
compounds in the data set. The EF x% metric relies on cutoffs made at various
points through the ranking and so can be sensitive to small changes in ranking.

The ROC curve is a graphical plot of the sensitivity (true positive rate, Eq. 4)
versus 1-specificity (false positive rate, Eq. 5) where sensitivity and specificity
are defined as

sensitivity =
TP

TP + FN
(4)

specificity =
TN

TN + FP
(5)

where TP represents the number of correctly identified actives (true positives),
TN, the number of correctly identified inactive (true negatives), FP, the number
of inactive incorrectly predicted as active (false positives), and FN the number
of active incorrectly predicted to be inactive (false negatives).

3 Results and Discussion

A library of 25 active compounds and 849 distinct inactives for COX-1 was
retrieved from DUD and docked into COX-1 using Vina, with the aim of assessing
Vina’s ability to predict and score correct ligand poses. The use of support vector
machines (SVMs), trained with the individual energy terms retrieved from Vina,
to improve the discrimination between active and inactive compounds was then
investigated.

3.1 Pose Prediction Evaluation

Vina pose prediction accuracy was analysed using the RMSD value between the
predicted poses and the available experimental conformations for a collection of
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Fig. 2. Left. Best binding pose of compounds BFL, diclofenac, flurbiprofen, in-
domethacin, naproxen and salicylic acid in COX-1 active site as predicted by Vina.
Right. Plot of energy vs. RMSD for the best ranking poses of each compound.

six different compounds in complexes with COX-1: BFL, diclofenac, flurbipro-
fen, indomethacin, naproxen and salicylic acid. Fig. 2 (left panel) presents the
docked top ranking poses of each of these six reference compounds according
to Vina’s scoring function. Visual inspection of the poses suggests that Vina’s
native docking and scoring protocols can capture the key interactions respon-
sible for ligand binding to COX-1. A plot of predicted energy values for each
pose as a function of the RMSD values between each pose and the appropri-
ate crystal structure is also shown (Fig. 2, right panel). For this collection of
six compounds, the plot confirms “good” pose predictions as judged by the low
RMSD value (RMSD ≤ 2Å) of the best scored pose of each compound. These
positive results at pose prediction offer the basis on top of which improvements
to Vina’s ranking performance, through training of its scoring function, may be
attempted.

3.2 SVM Classification Models

To select the optimal proportion of actives and inactives (decoys) to include in
the training sets, the compounds were first divided in three random sets for 3-fold
cross validation, and then the sets of inactives were further divided in n subsets,
with n ranging from 5 to 36. Given that each of the n models predicts a different
classification for each compound in the test sets, a consensus classification was
obtained based on the n classifications of the n models. Then, the F score was
calculated for each of the three consensus classification obtained from the cross
validation, and the average value of the three F scores attributed to each value
of n. The best average F score was obtained for n = 33. Thus, the classification
models evaluated were produced with the number of partitions in the decoy set
equal to 33.

3.3 Performance Evaluation

The performance of Vina’s scoring function and our SVM classification models
in discriminating active from inactive compounds was evaluated using the values
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of the area under the ROC curve (AUC) and enrichment factors (EF) (Table 1,
Fig. 3). The values of AUC examine the overall performance of the scoring
function and classifiers, while EF values account for their performance on the
“early recognition” of the active compounds.

Overall, the results show that SVM classification models (ROC AUC ' 75%)
perform considerably better than the scoring function of Vina (AUC ' 36%)
(Fig. 3). In fact, AUC values show that for COX-1, Vina scoring performs worse
than random. On the other hand, the SVM classification models trained using
the energy parameters of Vina’s scoring function unquestionably outperform
Vina’s scoring function for COX-1.

AUC (%) EF 1% EF 5% EF 10%

Vina Scoring 36.65 0 0.8 1.6

Classifier 1 74.95 10.96 4.8 4

Classifier 2 74.46 12 4.8 3.6

Classifier 3 74.47 8 4.8 4

Table 1. Comparison of the area under the ROC curve (AUC) and enrichment factors
(EF) at top 1%, 5% and 10% of the ranked list of compounds screened obtained for
the Vina scoring function and the SVM classification models with n = 33.

The performance of Vina scoring function and our classification models were
further analysed for early recognition, using the enrichment factor (EF). EF
values at 1, 5 and 10% of the data set were determined and the results are
summarised in Table 1. The results show that Vina completely fails on the early
recognition of active compounds. On the other hand, the SVM classification
models perform well across the entire test set with average values of 10.32 ± 2.1,
4.8 ± 0 and 3.87 ± 0.23 at levels EF 1, 5 and 10%, respectively. Overall, the
SVM classification models trained using the energy parameters of Vina scoring
function show a significant improvement in discriminative power.

4 Conclusions

In the present work we make use of a non-linear machine learning method to
train a docking scoring function and thus improve its discriminative power to-
wards COX-1 inhibitors. First, we validated AutoDock Vina’s ability to predict
correct ligand poses in the target active site. The results show that Vina per-
forms well at pose prediction for COX-1 ligands, with RMSD values below 2Å.
Conversely, its scoring function fails to discriminate active compounds from in-
active. The results also show that our SVM classification models, trained over
the energy parameters of AutoDock Vina’s scoring function significantly im-
prove its discriminative power for COX-1 ligands, as reflected by the superior
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Fig. 3. Area under the ROC curves (AUC) reflecting the performance of Vina scoring
function and the SVM classifiers in discriminating actives and inactives for COX-1.

AUC and enrichment factor profiles. The derived models can be thus applied
either to the screening of new COX-1 inhibitors or to the design of new drugs
devoid of COX-1 activity. The presented approach may be followed for other tar-
gets of pharmacological interest in order to increase the likelihood of identifying
promising compounds by docking-based virtual screening.
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