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Abstract. Due to the NGS data deluge, sequence mapping has become
an intensive task that, depending on the experiment, may demand high
amounts of computing power or memory capacity. On the one hand,
GPGPU architectures have become a cost-effective solution that outper-
forms common processors in specific tasks. On the other hand, out-of-core
implementations allow to directly access data from secondary memory,
which may be useful when mapping against big indexes in systems with
low memory configurations. In this paper we discuss the implementa-
tion of backward search methods for inexact mapping in these two study
cases.
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1 Introduction

With the advent of next generation DNA sequencers [3][7] in the mid-2000s, the
term Next Generation Sequencing (NGS) emerges. NGS sequencers have been
constantly improved, generating a genomic data deluge [4] due to their increased
performance and lowered operating costs. A topic actively revised to satisfy NGS
needs is the alignment of DNA sequences [11]. In the field of bioinformatics, we
refer with the term sequence mapping to the alignment of small reads against a
DNA.

Sequence alignment may reveal functional or evolutionary relationships be-
tween genes or proteins. Furthermore, the existence of DNA similarities between
a patient and an individual with a detected genetic disease may be used effec-
tively in diagnostic medicine. In order to detect these similarities, a sequence
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2 Inexact Sequence Mapping study cases: Hybrid GPU and Big Indexes

mapping algorithm must allow a certain number of errors (insertions, deletions
and mismatches).

Nowadays, several mapping techniques are based in backward search methods
over Suffix arrays [16] (SA). Some of these methods require the generation of
an index with the Burrows Wheeler Transform [2][17] (BWT). One of these
indexes is the Ferragina and Manzini Index [5] (FM-Index), with applications
in sequence mapping [10].

Among the different available choices that provide faster computation mod-
els, General Purpose Graphic Processing Units (GPGPUs) based on CUDA [21]
or OpenCL [20] are a very cost-effective option. Thanks to these frameworks the
GPGPU architecture can be exploited efficiently in general purpose problems,
taking into account its micro-grain parallelism and memory hierarchy. Among
the mapping tools supporting GPGPU computing we can name SOAP3-dp [13],
CUSHAW2 [14] and Barracuda [8].

The computational complexity of backward search methods grows exponen-
tially with the number of errors allowed. For this reason they are commonly
employed to find the pair-ends of a read or as a seeding step before a local
alignment algorithm.

In the first study case, we overview a real hybrid CPU-GPU algorithm based
on backward search. This algorithm separates the computation that will achieve
a higher speed-up on the GPU from the computation that will run better on the
CPU. The computation done in the GPU is used to obtain both the pair-ends
of a read and, with very little CPU overhead, the mappings with one error. The
overall implementation takes advantage of the GPU computing power, which
reflects in an optimised speed-up. This is an extension of previous work [24], in
which we developed an FM-Index implementation for GPUs.

In the second study case, we compare the performance of our preprocessing
algorithm using csalib out-of-core index [1] against similar algorithms that work
on main memory, like those found in Bowtie 1 [9] and SOAP2 [12]. This imple-
mentation is useful when working with big indexes in systems with low memory
profiles. We describe the compatibility interfaces that allow to use our algorithm
with different index implementations easily.

The manual, source code and datasets are available at (http://josator.
github.io/gnu-bwt-aligner/). The algorithms presented here are currently
being included in the OpenCB pipeline (https://github.com/opencb). The
source code is distributed under the LGPLv3 license terms.

2 Theoretical approximation

Let A = {A,C,G, T} be an alphabet, and $ a symbol not included in A with
less lexicographic value than all the symbols in A. Let X be a reference string
terminated by $ with size n. Let X[i] = ai be the i-th symbol of string X.

We construct the suffix array of X in matrix M by rotating the values of
the reference string. Then, we sort alphabetically matrix M to obtain the SA of
the reference genome [23]. From the SA we obtain the BWT, which can be used
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to build an index of the reference genome. However, recent approaches compute
the BWT directly [22], obtaining the compressed SA later [6].

For example, given the string “AGGAGC$”:

M =



A G G A G C $
G G A G C $ A
G A G C $ A G
A G C $ A G G
G C $ A G G A
C $ A G G A G
$ A G G A G C



0
1
2
3
4
5
6

→ SA =



$ A G G A G C
A G C $ A G G
A G G A G C $
C $ A G G A G
G A G C $ A G
G C $ A G G A
G G A G C $ A



6
3
0
5
2
4
1

Let S be an array composed by a permutation of the integers 0 . . . n − 1.
After the ordination of the SA, S contains the original positions of each suffix in
the reference. Vector B always corresponds with the elements of the last column
of matrix M .

S =
(

6 3 0 5 2 4 1
)

B =
(
C G $ G G A A

)
Vectors S and B constitute the BWT, from which we obtain the FM-Index [5]

data structures needed by the search algorithm. Let C(a) be the number of
symbols in X (excluding $) lexicographically smaller than a ∈ A:

C =
(

0 2 3 6
)

Let O(a, i) be the number of occurrences of symbol a ∈ A in B[0 : i − 1] (first
column denotes position -1, before the start of the search):

O =


0 0 0 0 0 0 1 2
0 1 1 1 1 1 1 1
0 0 1 1 2 3 3 3
0 0 0 0 0 0 0 0


A
C
G
T

Regarding matrix O this data structure must be compressed in order to fit
the GPGPU memory. We use a compression scheme similar to the one described
in [10], but using bitcount operations which are implemented at hardware level
on the GPGPU. Vector S can be compressed following [6], but it remains in the
CPU main memory.

We also define Sr, Br, and Or as the data structures of the BWT of the
reverse reference. This reverse FM-index allows to analyse the read in forward
direction.

Let W be a substring of X. All suffixes that contain W as prefix are listed
together between a unique interval [k, l] in the SA. Algorithm 1 consists on
a backward search that determines if W is a substring of X in O(|W |) time.
On each step, a symbol of W is analysed obtaining new values of [k, l] for the
current substring. At the beginning k = 0, l = |S|−1 and pos = |W |−1. On each
iteration this interval is approximated. At the end, if k ≤ l string W belongs to
X. We return the result in variable r using a special notation ([k, l] with error),
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this means that we return interval [k, l] with a single possible error received as
parameter. When the algorithm has finished we can use vector S to recover the
original positions in X of the values between [k, l].

Algorithm 1 Exact Backward Search

1: exact backward(IN: W, [k, l], pos, error, index. OUT: rout).
2: for i← pos . . . 0
3: [k, l]← search iteration([k, l],W [i], index)
4: if k > l break
5: end for
6: rout ← [k, l] at -1 with error
7: end function

In the case of the FM-Index search iteration← fm iteration (algorithm 2).
A more detailed explanation can be found in our previous publication [24].

Algorithm 2 FM-Index iteration

1: fm iteration(IN: [k, l], b, index. OUT: [k′, l′].)
2: k′ ← index.C[b] + index.O[b][k] + 1
3: l′ ← index.C[b] + index.O[b][l + 1]
4: end function

3 Hybrid GPU algorithm

Some bioinformatics applications, like RNAseq analysis [19][18], take advantage
of backward search methods to find the pair-ends of a sequence, whose contents
are then analysed with a local alignment algorithm. The computation of the
pair-ends can be effectively done in a GPGPU and then combined in an hybrid
pipeline with a lightweight CPU function allowing one error sequence mapping.
This special case is an improvement over non-hybrid exact mapping on GPU. Its
main advantage is that it allows to find the pair-ends plus one error mappings
with very little overhead. Moreover, it constitutes a real hybrid computation
approach: some steps are executed on the GPU and the rest on the CPU (algo-
rithm 3).

The hybrid inexact mapping method is based on the pseudo-code in algo-
rithms 4 and 5, which describe the backward direction routines. This design
separates the code that will execute better in the Single Instruction Multiple
Data architecture of the GPU from the code that will be faster on the CPU.

The vector gpu functions (algorithm 4) return the values of all the subse-
quent [k, l] intervals calculated during an exact search of a read W . These values
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Algorithm 3 Sequential execution

1: main()
2: vk, vl, pair ← backward vector gpu(W, index)
3: vki, vli, pairi ← forward vector gpu(W, index)
4: results += backward helper cpu(W, vk, vl, pairi, index)
5: results += forward helper cpu(W, vki, vli, pair, index)
6: end program

are stored in vectors vk and vl. Also, they return the last position with an in-
terval satisfying k ≤ l in variable pair, this is used to obtain the pair-ends after
the execution of the algorithm.

When an interval does not satisfy k ≤ l, all the remaining elements of the
vector are filled with the last non-satisfying values of [k, l]. The time consumed by
the filling loop in the GPU is insignificant and it is needed to stop the exploration
in the helper cpu algorithm when reaching the position where a substring is
not present.

Algorithm 4 Backward Vector GPU

1: backward vector gpu(IN: W, index. OUT: vk, vl, pair.)
2: [k, l]← [0, size(index)− 1]
3: pair ← 0
4: for i← |W | − 1 . . . 0
5: [k, l]← search iteration([k, l],W [i], index)
6: if k > l then
7: pair ← i + 1
8: break
9: end if

10: [vk(i), vl(i)]← [k, l]
11: end for
12: for i← pair − 1 . . . 0
13: [vk(i), vl(i)]← [k, l]
14: end for
15: end function

The helper cpu functions (algorithm 5) perform the inexact search, they
receive as parameters the value pair and the interval vectors vk and vl calcu-
lated by the vector gpu functions. Before starting the analysis with one error,
we check the values of vk and vl at the starting position to include the exact
matching case in the results. In each iteration the helper function reads the
values of the vectors, instead of spending time calculating them.

The analysis starts in the position of the last valid interval of the opposite
direction (pairi), but only if it is smaller than the middle position of the read.
The pairi value indicates the longest valid substring of the read starting from
the beginning. As we are searching allowing just one error and we know that at
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pairi position we must allow a dissimilarity, we will only find mappings if the
substring between pairi and the end of the read is present in the reference. This
is similar to the strategy presented in [10], but in this case we do not need to
implicitly calculate a bounding vector.

Algorithm 5 Backward Helper CPU

1: backward helper cpu(IN: W, vk, vl, pairi, index. OUT: results
2: if vk(0) ≤ vl(0) then
3: results += [vk(0), vl(0)] with [ ]
4: end if
5: pos← min(|W |/2, pairi) + 1
6: range← vl(pos + 1)− vk(pos + 1)
7: for i← pos . . . 0
8: rangep ← range
9: range← vl(pos)− vk(pos)

10: if rangep = range continue
11: results += exact backward(W, [vk(i + 1), vl(i + 1)], i− 1, D(i), index)
12: for b ∈ {A,C,G, T}
13: [k, l]← search iteration([vk(i), vl(i)], b, index)
14: if k ≤ l then
15: if b 6= W [pos] then
16: results += exact backward(W, [k, l], i, I(i, b), index)
17: results += exact backward(W, [k, l], i− 1,M(i, b), index)
18: end if
19: end if
20: end for
21: end for
22: end function

During the mapping with one error, the algorithm only explores the possible
deletions, insertions and mismatches (D,I,M) if the number of suffixes in the
current [vl(pos), vk(pos)] interval is different to the values of the last interval
(rangep = range). When the range value becomes smaller after analysing a
symbol, it indicates that we have lost some strings that could be mapped allowing
errors in the that position. Notice that after a position with an invalid [k, l]
interval rangep = range will always be true, as we filled the rest of the vector
with the same value in the vector gpu function.

4 Out-of-core execution

The second study case is based on our inexact mapping algorithm implementa-
tion on CPU. As it is based on replaceable components, we recently added a new
backward search runtime using csalib interfaces. The csalib library provides sev-
eral backward search implementations which are either based on the FM-Index
or SA. The main difference of csalib with our current implementation is that the
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data structures are not loaded into main memory [15], but accessed from disk
by demand using mmap. Such properties may be useful in memory demanding
tasks, like mapping against big genomes. We benchmark our inexact mapping
algorithm, comparing our in memory implementation of the FM-Index with the
csalib out-of-core implementation for DNA.

Our CPU algorithm is compatible with any backward search implementation
providing the following interfaces:

[k′, l′]← search iteration([k, l], symbol, index ) (1)

position ← get sa(suffix , index ) (2)

suffix ← get isa(position, index ) (3)

size ← size sa(index ) (4)

This simplicity eases portability. Function 1 is a single backward search it-
eration. In a single iteration we have an initial [k, l] interval in the suffix array
and after analysing a symbol we end with an equal or narrower [k′, l′] interval.
This function must also work in forward direction by only changing the index.

Function 2 returns the original position in the reference of a given suffix array
position, while function 3 is its inverse. Finally, function 4 returns the size of the
suffix array.

5 Results and discussion

All the executions have been performed in a PC with an Intel(R) Core(TM) i7-
3930K CPU running at 3.20GHz speed, 64GB of DDR3 1066 MHz RAM and a
Raid 0 of two OCZ-VERTEX4 SSD drives. The machine has two Nvidia GeForce
GTX 680 GPGPUs with 4GB of RAM.

5.1 GPU results

In the hybrid CPU-GPU tests the reads are mapped against the Drosophila
Melanogaster genome. All the reads are extracted from the genome, being exact
matches of lengths 50-200 bps.

The test in table 1 demonstrates the effectiveness of the hybrid parallelisation
model. We employed a small set of 4000 reads. First, we measure the execution
time of the original algorithm on CPU, this algorithm only allows one error.
Second, we divide the logic of the original algorithm in the two subroutines de-
scribed (vector and helper). We observe only a 7% overhead when separating
the logic. Also, we see that the vector function performs the 97% of the com-
putation. Finally we execute the vector subroutine on the GPU, obtaining a
10.5 speed-up (including memory transfers). As we did not introduced the code
of the helper function on the GPU, we can still parallelise it on the CPU. This
parallelisation will be more effective, since the helper function contains all the
conditional execution code which is not suited for the GPU SIMD model.
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Table 1. Effectiveness of the hybrid model

Function call Microseconds

CPU original 61868

CPU Vector 60450
CPU Helper 5289

GPU Vector 5786

The test in table 2 consisted in executing all the function calls of the hybrid
algorithm sequentially. We also employed a small set of 4000 reads, in this case to
measure the impact in the total execution time of each step. Notice that writing
the results to disk takes almost half of the time. For this reason, while the GPU
is working we concurrently write results to disk.

Table 2. Sequential execution of the hybrid CPU-GPU algorithm

Function call Microseconds Percentage

disk read 1045 4.5%

cpu to gpu 417 1.8%
vector gpu 3392 14.76%
gpu to cpu 1977 8.6%

helper cpu 5289 23%
disk write 10849 47%

TOTAL 22969 100%

In figure 1, we compare the execution times of our GPU implementations for
exact and one error mapping against our CPU implementation and SOAP3-dp.
We employed a dataset of 2 million reads and measured the tools under the most
similar conditions possible. As we already demonstrated in [24], we outperform
SOAP3-dp when performing exact mapping on GPU. The hybrid CPU-GPU
approach is slightly slower than SOAP3-dp when allowing 1 error, but as can be
seen in figure 2 we are finding many more mapping locations due to the support
for insertions and deletions with one error. Notice that in these tests most of the
time is spent in disk writes.

We conclude that the hybrid model presented in this paper is a valid and
different approach for inexact mapping on GPU. The main advantage of this
model is that it allows to increase the sensitivity of sequence mapping with one
error on GPU without decreasing the speed-up provided by the architecture. In
addition, when a read is not found the algorithm returns its pair-ends, which is
another advantage of this approach. The pair-ends can be used as seeds for a
secondary local alignment algorithm (like Smith-Waterman).
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5.2 Out-of-core results

In the out-of core tests the reads are mapped against the Ensembl 68 human
genome built upon GRCh37. The program dwgsim 0.1.8 from SAMtools was used
to simulate 2 million Illumina reads of 250 nucleotides length. A high quality
dataset containing a maximum of 2 N’s per read and 0.1% of mutations with
10% indels was generated.

Figure 3 compares the execution time of our reprocessing algorithm using
both our implementation of the FM-Index and the csalib out-of-core runtime.
Also, Bowtie 1 and SOAP2 are included in the benchmarks, in order to com-
pare our approach with existing algorithms implementing the same functionality.
Figure 4 shows the total mapping locations found by each algorithm. It demon-
strates that we are performing a similar computation, with a slightly better
sensitivity.

The results of this test reveal that the out-of-core execution reduces memory
consumption to 200MB, with a reasonable performance hit (60%). Modern align-
ers, which perform seeding alignment before local alignment, can take advantage
of this new approach in order to reduce its memory requirements in early stages.
Finally, this increases the effectiveness of overall backward search methods, be-
ing capable of dealing with bigger indexes in machines with cost-effective SSD
disk configurations.
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