

AutoFlow: an easy way to build workflows

Pedro Seoane, Rosario Carmona, Rocío Bautista, Darío Guerrero-Fernández y M.
Gonzalo Claros

Plataforma Andaluza de Bioinformática & Dpto de Biología Molecular y Bioquímica, Univer-
sidad de Málaga, 29071 Málaga (Spain)

Abstract. Many bioinformatics tasks require the use of different software, mak-
ing workflows a current need in this research field. There are workflow builders
that usually try to simplify the interface disregarding a complex use. This may
lead to a non-scalability limitation, or the dependence on the facilities available.
Here it is presented AutoFlow, a workflow builder that can handle most com-
puter systems. It has been developed in Ruby and accepts any kind of software
that can even use very specific resources (such as GPU or FPGA). AutoFlow
has been designed to automatically launch tasks to the queue system. It can then
handle big workflows that can overflow the maximum execution time of the
queue system provided that each individual task can be finished within the
maximum execution time. AutoFlow has been implemented with iterative task
capability. Other interesting capability is an environment variable system that
allows the persistence of certain data for all tasks. This allows the data transfer
from a task to the next task and so on, enabling the inclusion of decisions that
can affect downstream tasks. AutoFlow includes tools to monitor task status,
graphic representations of workflows, file searching and timing. Two case-of
use are presented to illustrate AutoFlow capabilities: one workflow for assem-
bling and annotation of several libraries of Roche 454 sequences and another
workflow for RNA-seq analysis.

1 Introduction

The high-throughput sequencing technologies produce a large amount of data that
require the development of large and complex workflows with lots of instructions. For
example, genome sequencing generates large files of reads that must be pre-
processed, assembled, verified, and then annotated. Typically, assembly and
annotation can be performed using various programs and parameters to obtain
different results that require further reconciliation or selection. Some way of
automation of this repetitive task will be beneficial. Moreover, when selection is
required, downstream tools are depending on this decision, providing different results.
Therefore, a workflow or a pipeline is designed to encompass all the programs and
parameters used to get the final result, and allows the user to save time and efforts by
not having to launch the different tasks on his own.

Pipelining tasks allows to automatise the use different software tools, where the
output data of a tool is used as input for other tools, or different input files must

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 342

converge to provide a single, final result. Nowadays, many platforms are able to build
and execute workflows, such as Ergatis[1], Kepler[2], Triana[3], or Dyscovery
Net[4], although the most widely used are Galaxy[5], Taverna[6] and their fusion,
known as Tavaxy[7]. Both platforms are based on web services that users can
combine to design and execute customised workflows. The above platforms have
been designed to simplify the creation and execution of workflows, so that users
without computing skills can use them. Among the most noticeable features, these
platforms have a graphical user interface (GUI) that enables the user to design and
execute workflows. Nevertheless, the usability is limiting the flexibility, and complex
workflows or workflows with new software are no easy to handle. Furthermore, the
user has not control on used resources and this can diminish the workflow
performance.

Here it is presented AutoFlow, a Ruby-based workflow manager that allows
building any desired workflow or pipeline. It is self-contained and the only
dependences are GNUplot and dot[8]. It enables execution control by the user. It
allows the design of dynamic workflows that can take decisions about the data while
the workflow is running. Its main goal is to simplify repetitive tasks while removing
limitations inherent to other workflow tools. On the other hand, it requires that users
must have computing skills and knowledge about the software to be used.

2 Methods

2.1 Implementation of tasks

AutoFlow is a ruby gem that has been developed on Ruby 1.9 and SLES Linux. It
uses a template script where every task is described with all its attributes and
afterwards it is launched to the queue system (in this case, we use a module sentence
of SLURM queue system, but other queue systems can be implemented). Each task is
identified by a unique tag, which will be used for reference purposes and graphical
representation. The general structure of a task is written as:
listing){

 module load software

 ?

 ls folder

}

where the first line is the task name or tag (i.e. listing) finishing with a ')' character.
This tag will be used to identify the task in graphical representations (see below). The
task definition, written between '{}', has two parts separated by a line starting by the
control character '?'. The lines before '?' serve to initialise the environment, and the
lines after ‘?’ are the commands to be executed (i.e. ls folder). The first word of the
first command is used as reference for the output storage. Since the sintax is bash-
based, any software or platform based on command lines, such as Matlab, C, Ruby or
Python, can be used.

Task iteration, changing only some parameter, can be easily done writing:
listing_[user;system;folder]){

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 343

 module load software

 ?

 ls (*)

}

where the parameter succession within brackets separated by semicolons
([user;system;folder]) serves to create a new task for each parameter. This is done
replacing the '(*)' tag by each parameter. This is very useful for software
benchmarkings and searching the best parameters in a program with a particular
dataset.

When a task is depending on finishing a previous task, it can be declared as
follows:
listing){

 module load software

 ?

 ls folder > temp

}

show){

 module load software

 ?

 cat listing)/temp # it will not be launched until ‘temp’ is finished

}

The string variables implemented in AutoFlow are helpful in, for example, task
decisions. They are alphanumeric strings that begin with '$' or '@' characters (i.e.
$sentence in the following example).
message){

 module load software

 ?

 echo $sentence

}

The variables must be declared in the command line that launches the workflow,
allowing to the user to change parameters in the workflow without modifying the
template. Therefore, the workflow is completely independent of the used data. '$'
character indicates that the variable will not be changed along the workflow. On the
contrary, variables beginning with '@' can be modified. The ‘@’ variables are very
useful to transfer certain data between tasks and it helps in making-decisions.

2.2 Launching workflows

Workflows can be launched as follows:

Autoflow -w template

where -w indicates that template is the input data. This is the only mandatory
parameter.

Before launching a new workflow, it must be checked to find errors and
inconsistencies. The command line option --graph generates a graphical
representation of the workflow, where the tasks are the nodes and the relations are the
dependencies. The representation can be semantic (Fig. 1 and Fig. 2A) or structural

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 344

(Fig. 2B): in the semantic representation, the tasks are represented with their tags,
allowing to the user to interpret the workflow easily. The structural representation
uses the main command name of every task. These plots show which programs are
used in the workflow and where the data are saved by each task. As a result, relation
inconsistencies are becoming apparent, facilitating the identification and fixing by the
user.

Another command line option, --verbose that generates a list of tasks with their
attributes on command line, can also be helpful in debugging.

When a template is launched, AutoFlow generates a job for every task in the queue
system. To do so, a folder per task is created with the name of their main command
(as in the structural representation, Fig. 2B). All the folders are saved within the
default folder exec where AutoFlow is running. Within each folder, a bash file is
created with all necessary information for the queue system. AutoFlow replaces all
key characters by their values and all the dependencies by absolute paths. Then, each
bash file is sent to the queue system and AutoFlow takes its job ID that is used to
control dependencies (if any) and the task launch timing. AutoFlow ends his work
when the last task is queued.

Three additional information state files are created: (1) a log file containing the
start and the end of each task; (2) a file containing the relations between tag task and
where has it been saved; and (3) a file where all dynamic variables (that begins with
'@' character) are defined. This file is loaded by all the task and it is created only if
there is set a dynamic variable in the template.

2.3 Experimental data

Two dataset have been used in this work to illustrate AutoFlow capabilities: (i) for
Case 1, a 454 dataset of two different tissues: A (372 750 reads) and B (429 909
reads), and (ii) for Case 2, an Illumina dataset of two different conditions (control and
treatment) with three experimental replicates each one (experimental replicates have
2 457 983, 2 866 872 and 988 173 reads, and controls have 3 000 000 reads).

3 Results

3.1 Case 1: sequence assembly and annotation

The 454 dataset has been used to obtain three different assemblies with
interconnected tasks: one for each tissue and another one with the whole dataset. The
three assemblies can be obtained with the same template
(http://www.scbi.uma.es/web/pedro/assembly_annotation.txt). This workflow was
launched as follows:

Autoflow -w assembly_annotation -s -c 100 -u '-1' -t '5-

00:00:00'

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 345

The -c parameter says to the program how many cores must be used by each task.
Previously, the user must replace the number of cores parameter in a command by the
'[cpu]' string instead when he writes the template. -s says to Autoflow that tasks can
use different nodes and -u '-1' that queue system must assign the best number of nodes
to do the job. Besides, -t indicates the limit of time per task (in this case 5 days) .

The process described in Fig 1 allows the evaluation of the assembly quality based
on the number of unigenes with orthologue, the number of unique unigenes, and the
number of unique full length unigenes (Table 1). The manual inspection of Table 1
allows the selection of column “All-kmer29” as the better assembly, and these
unigenes can be submitted to a full annotation with Sma3 [13]. However, based on
these results, a new decision task was included (results not shown) to automatically
select the best assembly (All-kmer29) that will be directed to Sma3 annotation that
provided 34 971 annotated sequences. Sma3s lacks parallelisation capabilities but can
be executed taking advantage of array jobs. Although AutoFlow cannot handle array
jobs as such, it can be included within a wrapped easily created with
SCBI_MapReduce[14] to confer parallelization capabilities to Sma3s. In future
workflows, a wrapped Sma3 can be included in AutoFlow workflows.

In conclusion, this case-of-use of AutoFlow takes advantage of two features of
AutoFlow: (1) its capability for using results generated in previous executions and (2)
the capability of taking decisions when the workflow is running.

Fig. 1. Semantic representation of Case 1 workflow. Green boxes correspond to starting tasks,
and magenta boxes are the finishing tasks. Right and left branches of the workflow differ on the
assembly k-mer used by Euler[10]. Central branch correspond to an assembly using Mira[11].
Initial assemblies are analysed to recover putative useful «debris» and to remove artefactual
contigs using Full-LengtherNext and Bowtie[12], respectively. CAP3[9] is used to reconcile
Euler and Mira verified contigs, and the resulting supercontigs are analysed using Ful-
LengtherNext to obtain data of Table 1.

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 346

Table 1. Key parameters of Case 1 workflow

 Tissue A Tissue B All
 kmer 25 kmer 29 kmer 25 kmer 29 kmer 25 kmer 29
Unigenes 37283 37235 14178 14191 44837 44858
Unique unigenes 13775 13786 5962 5955 15328 15307
Unique full-length
unigenes 3882 3942 1512 1504 4736 4765

3.2 Case 2: RNA-seq analyses

This workflow (Fig. 2; http://www.scbi.uma.es/web/pedro/expression_analysis.txt) is a
simple example that takes advantage of iterative capabilities of AutoFlow. The
launching command was:

Autoflow -w template -c 4 -V '$evalue=p-value'

This command line has the new parameter -V that is used by the user for set
internal variables to desired values. The same workflow with the same data has been
launched three times, setting the static variable $evalue to 0.01, 0.05, and 0.1. The
$evalue variable is the cut-off P-value that uses our in-house pipeline for analysing
RNA-seq data to determine the statistic significance. The results were 2 780, 2 937
and 2 995 differentially expressed genes, respectively. As expected, the lower the P-
value, the greater the number of genes. More sophisticated, iterative analyses with
AutoFlow could help in the determination of the best P-value threshold without the
need of human intervention.

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 347

Fig. 2. Semantic (A) and structural (B) representation of the RNA-seq analysis workflow of
Case 2. The workflow first creates a mapping reference index (Index_ref), then makes the map-
ping with the control and conditions using Bowtie2 (Mapping_Cond_x and Mapping_Ctrl_x),
then makes the stats (Count) using the Python script sam2counts.py, and finally makes the
differential expression analysis (differential_expression_analysis) with our in-house
RNASeq_Pipeline.R script.

4 Discussion

AutoFlow is an easy-to-use and efficient workflow manager for researchers with
programming skills but without expertise in workflow design. This tool can manage
large and complex workflows, or can simplify repetitive workflows taking advantage
of the automatic management of iterative tasks.

The parameters and steps of workflow of Case 1 was fine-tuned using different
input data (results not shown). This demonstrates that the same workflow can be used
with different input data, allowing its re-use for several different experiments.
Moreover, the same workflow can be shared among laboratories provided that they
have the same software and queue system. Therefore, when several researches in a
project need to face data from different sources (laboratories) or organisms (animals,
plants, microorganisms...), they can use the same AutoFlow workflow changing or
tuning some parametres or programs.

As is shown in Figs. 1 and 2, and since AutoFlow is not limited by any database or
ontology, it allows the incorporation of any desired software in a workflow, provided
that the software works as a command line tool. Tools programmed in different
languages (C, C++, Ruby, Perl, Python, R, Java, etc.) can be combined without any
problem.

Finally, since AutoFlow is using bash for building the tasks and the environment
variables system, it contains the flexibility and power of command lines and scripts.
Consequently, the workflows can be dynamic and can take decisions when tasks are
on-going.

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 348

References

1. Orvis J, Crabtree J, Galens K, Gussman A, Inman JM, Lee E, Nampally S, Riley D,
Sundaram JP, Felix V, Whitty B, Mahurkar A, Wortman J, White O, Angiuoli SV: Ergatis:
A web interface and scalable software system for bioinformatics workflows. Bioinformat-
ics 26 (12). (2010) 1488-1492

2. Ludäscher B, Altintas I, Berkley C. D H: Scientific workflow management and the Kepler
system. Concurrency and Computation: Practice and Experience 13(10) (2006) 1039–1065

3. Taylor I, Shields M, Wang I, Harrison A: The Triana workflow environment: Architecture
and Applications. In: Workflows for e-Science, Springer (2007) 320–339.

4. Ghanem M, Curcin V, Wendel P, Guo Y. Building and using analytical workflows in dis-
covery net. In: Data mining on the Grid, John Wiley and Sons (2008).

5. Hull D., Wolstencroft K., Stevens R., Goble C., Pocock M. R., Li P., Oinn T.: Taverna: a
tool for building and running workflows of services. Nucl. Acids Res. 34 (suppl 2). (2006)
W729-W732

6. Goecks J., Nekrutenko A., Taylor J. and The Galaxy Team: Galaxy: a comprehensive ap-
proach for supporting accessible, reproducible, and transparent computational research in
the life sciences. Genome Biology 11(8). (2010) R86

7. Abouelhoda M., Issa S. A., Ghanem M.: Tavaxy: Integrating Taverna and Galaxy work-
flows with cloud computing support. BMC Bioinformatics 13 (2012) 77

8. Ellson J. , Gansner E. R., Koutsofios E., North S. C., Woodhull G.: Graphviz and dyna-
graph – static and dynamic graph drawing tools. In: Graph Drawing Software. (2004) 127-
148

9. Huang, X. and Madan, A.: CAP3: A DNA sequence assembly program. Genome Res 9.
(1999) 868-877.

10. Pevzner PA., Tang H., Waterman MS.: An Eulerian path approach to DNA fragment as-
sembly. PNAS 18(17) (2001) 9748–9753

11. Chevreux, B., Wetter, T. and Suhai, S.: Genome sequence assembly using trace signals
and additional sequence information. In: Computer Science and Biology: Proceedings of
the German Conference on Bioinformatics. (1999) 45-56.

12. Langmead B., Salzberg S.: Fast gapped-read alignment with Bowtie 2. Nature Methods 9.
(2012) 357-359.

13. Muñoz-Mérida A, Viguera E., Claros M. G., Trelles O., Pérez-Pulido A.J.: Sma3s: a three-
step modular annotator for large sequence datasets. DNA Research. In press. (2014)

14. Guerrero-Fernández D., Falgueras J., and Claros M. G.: SCBI_MapReduce, a New Ruby
Task-Farm Skeleton for Automated Parallelisation and Distribution in Chunks of Se-
quences: The Implementation of a Boosted Blast+. Computational Biology Journal 2013
(2013) ID 707540

Proceedings IWBBIO 2014. Granada 7-9 April, 2014 349

