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Abstract. RNA structure is used as a dynamic and robust supracoding sys-
tem, beyond the nucleotidic sequence, to store critical information in a mini-
mum size. The building blocks of this system are highly conserved folded ge-
nomic regions, the so-called functional RNA domains. They play, on their own, 
biological roles, such as interactions with proteins or nucleic acids. Therefore, 
deciphering the RNA structural code and understanding the structure-function 
relationship is critical for a deep knowledge of RNA function. This takes spe-
cial relevance in the case of RNA viruses, which exhaustively make use of 
functional RNA domains to get replication efficient and compact genomes. The 
RNA genome of the hepatitis C virus (HCV) can be considered a prototype in 
the investigations about functional genomic regions. It contains multiple struc-
turally conserved domains mostly located in the 5’- and 3’-untranslated regions 
(5’UTR, 3’UTR). These elements participate in HCV translation and replication 
by recruiting viral and host protein factors and also by establishing a complex 
and active all-RNA interaction network. Long-range RNA-RNA contacts are 
related to conformational rearrangements at the 5’ end of the HCV genome and 
also to the structural transition in the 3’UTR from the replication-competent 
conformer to the dimerizable form. Together, the essentiality of functional 
RNA domains and their high conservation rate makes them potential therapeu-
tic targets. This review provides an overview of those methodologies that have 
been mainly used for analyzing RNA folding and their application to the study 
of HCV molecular biology.  
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1 Introduction 

In recent years, the genome of many organisms has been sequenced. These studies 
have revealed that protein coding genes are a low percentage of the total genetic in-
formation. Furthermore, the complexity and variety of biological functions cannot be 
explained only by protein-mediated catalysis. Therefore, additional elements must be 
coded into genomes to fill these gaps. The knowledge that RNA may act as a regula-
tory and catalytic element prompted numerous studies that finally demonstrated that 
RNA itself is a key component of the metabolic machinery in all the living organisms 
[1]. As for protein catalysis, RNA function depends on its three-dimensional confor-
mation. RNA structure is determined by nucleotidic interactions that define loops and 
stems (the secondary structure). These are the building blocks to further generate 
helices duplexes, triple-stranded structures and other long-distant connections that 
finally yield the three-dimensional folding of an RNA molecule (tertiary structure) 
[2]. Structure enables RNA to recruit proteins, small ligands and metabolites; and 
even to interact with other nucleic acids or with itself. Understanding the biophysical 
relationship between structure and biological function is now the main goal in RNA 
investigations to know in depth the mechanisms underlying the regulation exerted by 
RNA molecules. For that purpose, several biochemical techniques have been devel-
oped. Together with the use of novel bioinformatic approaches, these methodologies 
provide an accurate way for deciphering RNA folding. These investigations can also 
help to expand our knowledge about important biological process controlled by RNA 
molecules, such as transcription elongation, splicing or translation [1].  
The versatility and dynamism of RNA acquires special importance in RNA viruses. 
Their genome is a dynamic and sophisticated element that contains all the information 
required for viral propagation, but is packaged in a minimum size. This is achieved by 
overlapping different coding levels. Thus, besides the protein coding sequence, nucle-
otides also code for structural information that is translated into an intricate regulatory 
network governed by an all-RNA based mechanism. This system grants important 
advantages to RNA viruses. Thus, the existence of functional structural regions, the 
so-called functional RNA domains, provides a robust genetic background [3-5] to 
resist the inclusion of mutations during viral replication. Interestingly, the same fea-
tures that achieve proficient viral pools also provide us a potential tool for destroying 
them. Thus, novel nucleic acids-based drugs targeting conserved functional genomic 
domains are now fundamental components in the antiviral toolbox [6].  
This review will provide a brief summary of those biochemical techniques used for 
the elucidation of RNA folding and their application to a practical case, the hepatitis 
C virus genome. It will also argue the importance of RNA structure as a regulatory 
element that is critical for the consecution of the viral cycle.  

2 Studying RNA folding 

A major point to take into account for the understanding of RNA folding is that the 
acquisition of the three-dimensional conformation is a dynamic process. RNA has the 
ability to fold back in itself to adopt complex structures based on other simpler ele-
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ments; it can also adopt different geometries, all of them with similar thermodynamic 
parameters and, therefore, equally probable, thus yielding complex conformational 
pools. The study of the final structure is, therefore, complicated and must follow a 
reliable route. 
In the initial step of the analysis, comparative sequence phylogenetic studies are used 
to predict potential base-pairs in a wide range of RNA molecules [7-10]. These results 
are further confirmed by the application of biochemical procedures. Treating RNA 
with chemical or enzymatic reagents able to specifically modify or cleave nucleotides 
in a structure-dependent way is a common strategy for inferring the secondary and, in 
some cases, tertiary structure. Modified or cleaved positions are detected as stops in a 
reverse transcriptase-mediated primer extension reaction, and further resolved by 
electrophoresis (Fig. 1A). This methodology has been implemented by the incorpora-
tion of high-resolution capillary gel electrophoresis [11]. Reactions are compared to a 
non-reagent experiment and to a dideoxy sequencing marker for the identification of 
each nucleotide position [12, 13].  
 

 
 

Fig. 1.  RNA structure mapping. 
 

Proceedings IWBBIO 2014.  Granada 7-9 April, 2014 255



One of the biophysical techniques that has gained relevance during last years is the 
SHAPE (selective 2’-hydroxyl acylation analyzed by primer extension) methodology 
[14, 15], a robust method for analyzing local nucleotide flexibility in RNA molecules 
[16]. This chemistry informs about the conformation of the ribose-phosphate back-
bone in all those dynamic residues, even if they remain solvent inaccessible. Thus, it 
may be used to ultimately define the overall geometry of an RNA molecule. SHAPE 
has been used to model the secondary structure of numerous RNA molecules [12], to 
detect conformational rearrangements [13, 17-19] and to monitor interactions with 
proteins [20] and small ligands [21, 22]. 
Either by chemical probing or by SHAPE analysis, relative reactivity quantification at 
each position is a requisite for inferring the secondary and tertiary RNA structure. 
This is a laborious work that can be accomplished by different softwares, such as 
CAFA [23], FAST [24], SHAPE-CE [25], HiTRACE [26] or the most widely used 
ShapeFinder software [27]. All these computational tools require many manual selec-
tions, which turns data analysis into a challenging and subjective work [28]. To over-
come this, Karabiber et al. developed the QuShape package [29], which is a user-
friendly implementation of previous algorithms.   
The resulting experimental reactivity values can be further used to constrain the most 
probable secondary structure by using different software tools. Calculating pseudo-
free energy change terms at each independent nucleotide from SHAPE experimental 
data yields robust structural models [30]. The algorithm is included in the 
RNAstructure tool [31] (http://rna.urmc.rochester.edu/RNAstructure.html). The com-
putational package also integrates several modules that allow for calculating 
pseudoknots [32], predicting the master structure for a set of related sequences [33] or 
inferring the binding affinity of oligonucleotides to RNA target regions [34, 35], a 
useful tool for designing small interfering RNAs.  
It is noteworthy that most of the in silico folding prediction strategies only consider 
canonical base-pairs (Watson-Crick and wobble interactions). This drawback has 
been overcome by the MC-Fold and MC-Sym pipeline [36], which considers the en-
ergetic contribution of every nucleotidic interaction by defining sets of nucleotide 
cyclic motifs. Thus, MC-Fold predicts secondary structures that can be further mod-
eled to three-dimensional conformations by MC-Sym. The pipeline exhaustively ex-
plores the structural space of an RNA molecule and includes modifications to ac-
commodate relative reactivity values derived from different chemical probing meth-
ods. 
As well as modeling the secondary and tertiary structure of an RNA molecule, in 
some cases, it may also be useful to get some information about the ability of certain 
regions in the target RNA to interact with oligonucleotides. These data can be used 
for designing specific and efficient antisense oligos or siRNAs directed against long 
RNA molecules, which are difficult to model in silico. Antisense oligonucleotides 
microarray methodology has been designed to inform about the accessibility of con-
secutive, overlapping stretches of nucleotides [37]. It relies in the strong correlation 
existing between the native folding of a target RNA and its capacity to differentially 
interact with a set of complementary DNA oligonucleotides (Fig. 1B). Thus, this 
technique provides data about the overall three-dimensional folding of the molecule 
and defines the most favorable regions to be targeted. DNA microarrays have been 
successfully used for the analysis of RNA fragments derived from the hepatitis C 
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virus (HCV) [13, 19, 37], the foot-and-mouth disease virus (FMDV) [38, 39] and the 
human immunodeficiency virus (HIV) [40].    
Together, the above mentioned biochemical and computational techniques provide 
complementary and not overlapping information about the two- and three-
dimensional structure of a target RNA. The next sections will describe the practical 
use of these methodologies for investigating the complex interaction network in the 
genomic RNA of HCV and its potential as antiviral target. 

3 Functional structural RNA domains in the HCV genome 

The HCV genome is a ~ 9.6 kb long, single-stranded positive RNA molecule, encod-
ing a single open reading frame (ORF) flanked by highly conserved untranslated re-
gions (UTRs) [41-43]. Throughout the infective cycle, the genomic RNA actively 
participates in the execution of different steps by using functional domains mainly 
located at both the 5’ and the 3’ ends.  
During early infection, viral protein synthesis is initiated by a highly structured ele-
ment that functions as an internal ribosome entry site (IRES), mostly placed at the 
5’UTR (Fig. 2) [44, 45]. The translation initiation mechanism used by HCV greatly 
differs to that used by most cellular mRNAs [46, 47] and is primarily accomplished 
by functional RNA domains [48] that replace the requirements of initiation protein 
factors. Importantly, the presence of structural elements at the 3’ end of the viral ge-
nome may also modulate the initiation and elongation steps involved in HCV transla-
tion [49-54]. 
The secondary structure of the HCV IRES was firstly modeled by comparative se-
quence analysis and thermodynamic-based predictions [55]. Further application of 
biochemical probing techniques, SHAPE methodology, nuclear magnetic resonance 
(NMR) and X-ray crystallography have refined and completed the initial theoretical 
model. Under physiological magnesium conditions, the IRES folds as a dynamic and 
extended element with tightly compact regions [56]. The minimum IRES element is 
defined by two major domains, II and III, plus the short stem-loop IV containing the 
start translation codon (Fig. 2) [56]. By using SHAPE chemistry and X-ray crystallog-
raphy, it has been shown that domains II and III are aligned at both sides of a double-
pseudoknot structure (PK1 and PK2; Fig. 2) that organizes the overall folding of the 
IRES and directs the positioning of the start codon at the ribosomal P site [57]. Many 
of the essential structural motifs required for efficient initiation of translation reside in 
the highly branched domain III (Fig. 2). It is composed by six hairpins (designated 
from IIIa-IIIf) organized around three- and four-way junctions that define the binding 
platforms for the eIF3 (junction IIIabc) [58] and the 40S ribosomal subunit (junction 
IIIdef) [59]. The essential subdomain IIId is a highly conserved G-rich element that 
functions as the core binding center for the 40S subunit [60-63]. Chemical and enzy-
matic probing assays, SHAPE analyses, NMR and molecular dynamics studies have 
reported that subdomain IIId is a dynamic stem-loop with a rigid, asymmetric internal 
E-loop that resembles the sarcin-loop of the ribosome [13, 24, 64-66]. The capping 
apical loop contains a phylogenetically conserved GGG triplet and adopts a typical U-
turn geometry that provides an improved interacting ability with proteins and nucleic 
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acids [60, 65]. Thus, the IRES could be considered as an all-RNA translation initia-
tion factor. 

 
Fig. 2. Functional domains in the HCV genome. 

The switch from translation to replication accounts at optimum viral proteins concen-
tration levels. At this time, the genomic RNA moves to the endoplasmic reticulum to 
constitute the replication complex. The 3’UTR of the HCV genome contains 
phylogenetically conserved structural elements that recruit a number of viral and cel-
lular factors required for viral replication and translation (Fig. 2) [67-77]. It also en-
compasses a palindromic sequence motif (dimer linkage sequence, DLS) that is relat-
ed to viral genomic dimerization [78-80] (Fig. 2). Interestingly, this process is absent 
in the rest of the members of the Flaviviridae family. This suggests that it should play 
an additional role in the HCV cycle different to just promoting the encapsidation and 
release of the infective virions. 
The essential 3’X-tail region occupies the very 3’ terminus of the HCV RNA genome 
(Fig. 2). By using enzymatic probing assays, SHAPE analyses and in silico thermo-
dynamic-based predictions, it has been shown that it folds into two mutually exclusive 
conformations [19, 79]. Both models preserve the essential, highly conserved 3’SLI 
domain at the very 3’ end. The upstream segment swaps from the two stem-loops 
(3’SLII and 3’SLIII) conformation, which occludes the DLS motif, to the dimerizable 
form with one stem-loop exposing the DLS [80] (Fig. 2). Dimerization initiates by the 
establishment of an apical loop-apical loop interaction to yield a thermodynamically 
favored kissing complex, which could then progress to a stable extended duplex in the 
presence of the viral core chaperone protein in vitro [78-80].  
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The use of sequence phylogenetic studies and mutational analysis, as well as further 
application of thermodynamic folding computational tools, has discovered a set of 
conserved stem-loop structures placed at the 3’ end of the coding sequence with po-
tential roles in the progression of the viral cycle [81-85] (Fig. 2). Among them, the so-
called 5BSL3.2 domain is indispensable for efficient replication [86, 87] and also 
regulates the IRES function, even in the presence of the translational enhancer 3’UTR 
[54]. The 5BSL3.2 domain is composed by two G-rich helixes, connected by an eight-
base bulge and capped by an apical loop [86, 88] (Fig. 2). It is embedded into a high-
er-order cruciform structure and delimited by the two adjacent stem-loops 5BSL3.1 
and 5BSL3.3. Importantly, both sequence and conformation are requisites for the 
efficient functioning of the 5BSL3.2 domain, which points to the establishment of 
interactions with viral and host protein factors [89, 90], as well as with other RNA 
domains of the HCV genome [84, 86, 91, 92]. 

4 The RNA-RNA interaction network tunes the folding of 
essential functional RNA domains in the HCV genome 

Throughout the course of the infective cycle, transitions between different stages are 
finely regulated to achieve the adaptive fitness. In this context, the dynamism of RNA 
is a great advantage for the virus, which uses functional genomic domains for further 
regulatory activities. 
The 5BSL3.2 domain is the prototype of a multi-function RNA element. Besides its 
role as recruiting agent for the viral RNA-dependent RNA polymerase [89], it has 
emerged as the central organizing partner for the establishment of a complex long-
distance RNA-RNA interaction network that operates in the HCV genome (Fig. 2). 
The apical loop interacts with a complementary sequence that appears selectively 
exposed in the apical loop of domain 3’SLII, in the non-dimerizable 3’X-tail con-
former. The resulting kissing loop contact is essential for HCV replication in vitro 
[86, 92]. SHAPE analyses performed by Tuplin et al. [92] have demonstrated that the 
structural consequences of this interaction are related to the viral genotype. Thus, in 
genotype 1 viruses, the 5BSL3.2 and 3’SLII domains fold as discrete stem-loops and 
the interaction seems to be absent; while in genotype 2 genomes, the contact for-
mation is well-supported and induces a clear increase in NMIA reactivity for the resi-
dues composing the 3’SLII stem. This increase could be associated to some degree of 
disorder around the interacting sequences [92] or could be the result of profound con-
formational rearrangements related to the acquisition of the flexible dimerizable form 
in the 3’X-tail [19].  
A second interaction involves the 8-nt bulge of the 5BSL3.2 domain and a comple-
mentary sequence placed around position 9110 (Alt sequence) (Fig. 2). Interestingly, 
the folding of this region is also affected by the viral genotype [92].  
Numerous efforts have been aimed at elucidating whether these two interactions are 
mutually exclusive, or on the contrary, they occur simultaneously to form an extended 
pseudoknot. Interestingly, SHAPE assays performed by Tuplin et al. [92] support the 
notion that, in genotype 2 viral variants, the 5BSL3.2 domain forms the core of an 
extended pseudoknot in which both distant contacts account simultaneously but in an 
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independent fashion, i.e., disruption of one contact does not significantly affects to the 
other. By the opposite, in genotype 1 viruses, only the 5BSL3.2-Alt interaction seems 
to be stable enough to be detected by SHAPE chemistry.    
In addition to organize the folding of the genomic 3’ end, the bulge of the 5BSL3.2 
domain also establishes a long-distance interaction with the apical loop of the subdo-
main IIId of the IRES region [91]. As occurred with the Alt-5BSL3.2 contact, in gen-
otype 1 replication competent RNA transcripts the interaction IIId-5BSL3.2 induced a 
fine-tuning effect over the involved regions and surrounding residues [13, 19], as 
detected by chemical probing, SHAPE assays and antisense oligonucleotides microar-
rays. RNA structure modeling of subdomain IIId was performed using the MC-
Fold/MC-Sym pipeline [36] for the replicative RNA (Rep) and compared to that ob-
tained for a transcript containing the isolated IRES region (I) (Fig. 3) (Romero-López 
and Berzal-Herranz, unpublished results). The experimental constraints derived from 
chemical probing and SHAPE analyses were applied to achieve accurate predictions 
[13]. The resulting models predict major structural changes in the Rep construct with 
respect to variant I at the residues in the apical loop (local root-mean square deviation 
RMSD of 6.84 Å), with minor differences in the E loop. These structural reorganiza-
tion events provide important clues regarding the implications for IRES function of 
conformational rearrangements mediated by the 3’ end of the RNA genome and could 
be likely associated to the regulation of viral translation [13, 54]. 
 

 
 

Fig. 3. RNA structural modeling of subdomain IIId. 

It has been recently reported that all these three interactions are equally probable [93]. 
Therefore, choosing between different contacts might depend on the presence of addi-
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tional host and/or viral proteins. An important consequence derived from the estab-
lishment of this interaction network is the induction of profound conformational rear-
rangements, not only in the directly involved residues and surrounding areas, but also 
in the rest of partners that compose such a network [19]. Thus, it has been shown that 
the IIId-5BSL3.2 contact regulates the structural swapping at the 3’X-tail to promote 
the acquisition of the dimerizable form [19]. 
All this information has been used to draw a working model that tries to explain the 
transitions between different steps of the viral cycle [19] (Fig. 4). In the early infec-
tion, the IRES would be mostly occupied by the translational machinery, thus favor-
ing the contacts Alt-5BSL3.2 and 3’SLII-5BSL3.2. After protein synthesis, the bind-
ing of the NS5B and other protein factors to 3’X-tail and the 5BSL3.2 domain would 
promote a molecular context in which the 5BSL3.2-IIId and 5BSL3.2-Alt interactions 
could be equally feasible. Exchange between them could contribute to the creation of 
an enhanced replicative process [84] by repressing translation [54]. Further increase 
in the copy number of the viral RNA would alter this equilibrium to favor the acquisi-
tion of the dimerizable form exposing the DLS motif in the presence of the core chap-
erone protein [78].  

 
Fig. 4. Long-range RNA-RNA interactions in the HCV infective cycle. 
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Hence, the 5BSL3.2 domain would act as a nucleation partner to bring into close 
proximity both ends of the viral genome. The acquisition of such circular topology 
would favor the establishment of a cross-talk between both ends, with important bene-
fits for the virus: promote an increase in the local concentration of essential proteins 
and cofactors and additional protection against the action of exonucleases. In addition, 
reducing the spatial distance between different functional domains would improve the 
regulation mediated by RNA elements.  

5 Targeting HCV genomic RNA with RNA ligands  

RNA viruses, such as HCV, present complex evolutionary replication dynamics that 
produce a wide spectrum of mutants. This feature greatly complicates the develop-
ment of efficient antiviral drugs. In the case of HCV, the combined use of generic 
compounds, such as α-interferon, with modified nucleotides and/or direct-acting 
agents achieves viral sustained responses for short periods of time, finally leading to 
the appearance of resistant variants [94]. Therefore, designing novel therapeutic strat-
egies and antiviral drugs is a major goal in HCV investigations. 
From a wide point of view, targeting conserved structural and functional genomic 
domains with RNA molecules is an excellent approach. As it has been mentioned, 
these regions exhibit high genetic robustness and the use of different RNA-based 
compounds directed against multiple viral genomic elements might contribute greatly 
to reduce the appearance of resistant variants. Among the multiple antiviral strategies 
with nucleic acid-based inhibitors, the use of antisense oligonucleotides [6], small 
interfering RNAs (siRNAS) [95] and aptamers [96, 97] has rendered promising re-
sults [6]. These studies have also shown that several challenges must be overcome for 
the efficient use of RNA-based inhibitors, such as specific cell targeting, delivery and 
stabilization [98]. In this context, the advances in chemical synthesis have allowed for 
the incorporation of modified nucleotides that prevent nuclease-mediated degradation 
of the antiviral molecule while improve pharmacokinetic properties and diminish 
immunogenicity [99]. These modifications include chemical substitutions at the ri-
bose 2’ hydroxyl group, such as the inclusion of 2’-O-methyl, 2’-O-fluoro and 2’-O-
methoxyethyl groups. Thus, new generation of modified nucleic acids-based drugs are 
currently being extensively developed and tested in clinical trials [6]. 

6 Conclusions 

Investigations in the field of RNA folding have been mainly focused on deciphering 
the relationship between structure and function. Classical and novel methodologies 
are now actively contributing to understand the rules that govern RNA folding, con-
formational transitions and their regulatory roles. This is of key importance in RNA 
viruses, which use RNA structure to encode critical genetic information for adaptive 
viral fitness. Thus, complex and sophisticated control systems governed by RNA 
elements are being found in many viral genomes. These regions present high genetic 
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robustness and may be considered excellent candidates for novel antiviral nucleic 
acids-based strategies. Improvements in DNA and RNA synthesis will likely help to 
develop innovative compounds that target functional structured domains to achieve 
sustained therapeutic responses with minimal toxicity and secondary effects.  
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Figure legends 

Fig. 1.  RNA structure mapping. A) RNA folding analysis by chemical probing or 
SHAPE analysis. The RNA is treated with chemical reagents that modify nucleotides 
at specific positions. RNA modifications act as stop signals in a reverse-transcription 
reaction. Fluorescently labeled color-coded primers are used to further map each 
modified residue. The resulting cDNA products are resolved by automated capillary 
electrophoresis. Raw data are scaled and normalized to finally yield the relative reac-
tivity values at each nucleotide. B) Antisense oligonucleotides microarray assays. 
Under native folding conditions, the RNA under study is fluorescently labeled and 
hybridized with a customized panel of antisense, overlapping DNA oligonucleotides. 
Differential hybridization ability for each oligonucleotide is related to different sol-
vent exposure at the target region. Fluorescent signal is quantified and normalized to 
render the relative accessibility pattern. 

Fig. 2. Functional domains in the HCV genome. Figure show the secondary struc-
ture proposed for the 5’ and the 3’ ends of the HCV genomic RNA and the long-range 
RNA-RNA interactions established between distant regions. At the 5’ terminus, the 
minimum region for IRES activity is depicted. The entire 3’ end contains the 3’UTR 
plus the stem-loops 5BSL3.1-5BSL3.3 and the Alt sequence motif at the NS5B cod-
ing sequence. The 3’X-tail folds into two different conformers with distinct functional 
roles. Dimer linkage sequence (DLS) is shown in grey. Pseudoknot elements are indi-
cated as PK1 and PK2. The translations start and stop codons are shown in bold. Nu-
cleotide numbering corresponds to HCV Con1 isolate. 

Fig. 3. RNA structural modeling of subdomain IIId. PDB RNA structure predic-
tion of subdomain IIId using the MC-Fold/MC-Sym pipeline. Experimental relative 
reactivity values were used to construct three dimensional models for subdomain IIId 
in the transcript I and the replicative RNA. Root mean-square deviation (RMSD) 
value was calculated from the comparison of the subdomain IIId between both mole-
cules in order to infer important differences in the stem-loop conformation. Color 
code: black, residues with a RMSD <3.5 Å with respect to molecule I; orange, nucleo-
tides with a RMSD ranging from 3.5 to 6.0 Å with respect to I; red, residues with a 
RMSD >6.0 Å. 

Fig. 4. Long-range RNA-RNA interactions in the HCV infective cycle. 1) During 
early infection, the naked genomic RNA initiates viral translation by an IRES-
dependent mechanism by directly recruiting the 40S ribosomal subunit at the subdo-
main IIId. This avoids the interaction IIId-5BSL3.2 and enhances the conformational 
reorganization of the 3’ end mediated by the 5BSL3.2 domain. 2) Viral protein accu-
mulation unleashes the transition toward the replication step. The ribosome is released 
from the IRES while protein factors bind to the 3’SLII. This favors a translational-
repressed state by the establishment of the IIId-5BSL3.2 contact and an enhanced 
replication process dependent on the interaction Alt-5BSL3.2. 3) The newly synthe-
sized RNA molecules with the preferred interaction IIId-5BSL3.2 would expose the 
dimer linkage sequence (DLS) in an apical loop. In the presence of the core chaperone 
protein, dimerization is favored in these conformers. Figure adapted from [19]. 
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