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Abstract. Model Checking is one of the formal verification methods
which can be used to infer parameters of a Gene Regulatory Network
(GRN) using discrete formalism of René Thomas. However, the sequen-
tial approach for identification of these logical parameters is computa-
tionally intensive and takes lot of processing time, depending on number
of genes and range of their expression levels in a network. In this paper,
we present an efficient approach for this problem, based on parallel com-
puting. We partition the parameter space into subsets and assign them
to processing elements on a distributed memory parallel computer. The
presented approach is implemented by using OpenMPI and existing tool
SMBioNet. The experimental results indicate that the approach is scal-
able and achieves 7X speed-up, for a relatively small GRN, comprising
of five genes.

Keywords: Parallel SMBioNet, Gene Regulatory Network, Discrete Mod-
eling

1 Introduction

Living cells are complex power houses of human machinery, where the activities
are organized as network of interacting entities such as Genes, mRNA and their
products. Understanding the structural and behavioral orientation of cellular
and sub-cellular interactions is fundamental step to uncover disease mechanics
and realization of personalized medicine [4]. As the complexity of these networks
increase, efficient computational methods are required not only to infer network
information from gene expression data, but also to gain insight into regulatory
mechanisms by finding answers to biological questions [6]. This growing complex-
ity of GRNs also requires correlation mechanisms between experimental data,
theory and computational methods [3]. Once a suitable framework is selected,
and the system under investigation has been modeled, identification of parame-
ters, coherent with biological knowledge, is a key problem known as Parameter
Estimation or Network Inference [5]. These parameters are not a priori known,
and have to be reverse engineered and compared with biological knowledge. The
problem of parameter estimation is extremely important in systems biology and
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directly effects the accuracy of results. Several computational methods have been
used for modeling and analysis of regulations at gene level. Model Checking [2]
is one of the widely used formal verification methods in this area, due to its
automated approach and predictive ability to answer questions.

In this paper, we present a parallel approach for logical parameter identifica-
tion of GRNs, and report experimental results on 8 nodes of High Performance
Computing (HPC) cluster. Our approach is based on well known discrete mod-
eling framework of René Thomas [1]. In this formalism, a GRN is represented
as labeled directed graph and its dynamics are derived from a set of logical pa-
rameters, which are unknown and can be calculated using model checking. We
divide the set of parameter combinations among processing elements by using
a block-wise decomposition scheme. Each processing element retains only those
parameters which are verified by model checker. We have performed a proto-
type implementation of our approach by modifying an existing implementation
of SMBioNet [12]. The experimental results indicate that presented approach is
scalable and achieves almost linear speed-up.

The rest of the paper is organized as follows; in Sec. 2, we provide a brief
background of René Thomas formalism and recall some associated definitions,
followed by sequential algorithm for paramter identification using model checking
in Sec 2.4. In Sec. 3, we discuss our parallel approach, its implementation, and
performance evaluation. Finally, Conclusion and Future work is presented in
Sec. 4

2 Parameter Identification through Model Checking

2.1 Discrete Modeling Framework

Numerous approaches have been proposed for modeling regulatory networks [7].
Continuous modeling approaches using ordinary and partial differential equa-
tions have been applied but analytical solutions of these methods are difficult to
solve due to non-linearity of gene regulations. Numerical solution can be com-
puted but their accuracy depends on the value of logical parameters, which are
not experimentally measurable. These limitations led Thomas to propose a sim-
plification of biological models in the from of a discrete modeling framework [1].
The main advantage of using discrete model is that the number of logical param-
eters are finite. we provide an introduction of this framework and recall some
associated definitions. For more detailed review of semantics of this framework,
we refer to [13]

Definition 1. A Gene Regulatory Network (GRN) is a labeled directed graph
G = (V,E), where V = {v1, ..., vn} is set of nodes in which each vi ∈ V rep-
resents a biological entity in the network and E = {e1, ..., en} is set of edges in
which each evx,vy ∈ E represents interaction between a pair of biological entities
vx and vy. Each edge vx → vy is labeled by a pair (tx,y, αx,y), where (tx,y), called
threshold, is a positive integer and (αx,y) ∈ {+,−} is the sign of interaction (+
for activation and - for inhibition). Each node vi ∈ V is provided with a limit
`vi

, which is equal to the out-degree of vi, and `vi
= 1, if out-degree is zero.
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In a directed graph G = (V,E), we denote set of predecessors and successors
of a variable vi ∈ V as G−

vi
and G+

vi
respectively. We represent a qualitative state

like a vector containing individual expression level of each variable in GRN.

Definition 2. Let G = (V,E) be a GRN. A State of GRN is n-tuple S =
{sv1

, .., svn
}, where n is the number of variables in the network and svi

is the
abstract expression level of vi with svi

∈ N and svi
≤ `vi

.

The total number of states in a GRN G with n variables are given as∏n
i=1(`vi

+ 1)∀v ∈ V , where `vi
denotes the maximum expression level of vari-

able vi in the network. The number of effective regulators of a variable vi at
expression level svi

, is formally represented by its set of resources.

Definition 3. Let G = (V,E) be a GRN. The Set of Resources ωvy
of a variable

vy ∈ V , at level svy
, is defined as ωvy

= {vx ∈ G−
vy
| (svx

≥ tx,y and αx,y = +)
or (svx

< tx,y and αx,y = −)}

While determining the resource set of a variable, presence of an activator or
absence of inhibitor are treated as resource. The set ωvy

contains the inhibitors
of vy with expression levels below the threshold and activators of vy whose
expression levels are greater than or equal to threshold. The target towards
which the variable vy evolves, when its resource set is ωvy

, is given by a set of
positive integers Kωvy

≤ `vy . When variable vy is at a certain expression level
svy ∈ S, the next level towards which Svy evolves, is determined by the value of
its logical parameters Kωvy

and there are three possibilities. When svy
< Kωvy

,
the value of svy

can be incremented by one unit. Conversely, if svy
> Kωvy

, svy

can be decremented by one unit. However, if svy
= Kωvy

, svy
does not evolve and

remains constant. The state graph is generated using the values of these logical
parameters. The number of possible parameter combinations can be huge, even
for a small network. Given a GRN G = (V,E), with n variables, total number of

parameterizations are given as
∏n

i=1(`vi
+ 1)2

|G−(vi)|
, where |G−(vi)| represents

cardinality of the set of regulators of vi.

2.2 Example 1 (Mucus Production in Pseudomonas aeruginosa)

We apply Thomas’ framework on GRN of mucus production system in Pseu-
domonas aeruginosa [10], an opportunistic pathogen that secretes mucus in lungs
effected by cystic fibrosis. It causes respiratory deficiency in the patients and is a
major cause of mortality in lungs diseases. The GRN involved in mucus produc-
tion mainly comprises of two genes; AlgU, which is the main regulator of mucus
production, and its inhibitor. This network can be modeled as a labeled directed
graph (Figure 1a), in which variable x represents AlgU and variable y represents
its inhibitor. The interactions are shown as directed edges. The edge from vari-
able x to variable y with positive sign shows that AlgU favors the production of
its inhibitor. Conversely, the edge from variable y to variable x is labeled with
negative sign, which shows that y has negative influence on the production of
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AlgU. A Self loop on x represents the fact that presence of AlgU also favors its
own production, when its level reaches 2. In order to deduce dynamics, the GRN
is translated into a state graph (Figure 1b) by using some parameter values. The
number of parameterizations for a given GRN depend on number of genes, their
regulatory relationship and range of their expression levels. Different parameter-
izations of the same network may lead to different state graphs and consequently
to unique biological behaviors. In case of Psedomonas, variable x can take three
values {0, 1, 2}, whereas variable y can take two values {0, 1}. In this case, the

total number of states are six. Each variable v has 2|(G
−(vi))| regulators, where

|G−(vi)| represents the in-degree of v. This calculation leads to 324 parameter
combinations for asynchronous dynamics, even for a network that only involves
two genes.

x y

0,1

0,0 1,0 2,0

1,1 2,1
+,1

+,2

-,1

(a) (b)

Fig. 1: (a) Simple Interaction Graph of two Genes X and Y, Each interaction
is labeled with threshold and nature of influence, + sign shows activation and
- shows Inhibition), (b) State Graph shows two stable states [(0, 1), (2, 1)] with
following parameter values; Kx{} = 0, Kx{x} = 2, Kx{y} = 2, Kx{x, y} = 2,
Ky{} = 1, Ky{} = 1

2.3 Model Checking

Modeling regulatory networks using Thomas’ framework leads to qualitative
model (state graph), and graph traversal algorithms can be employed to infer
simple behaviors such as deadlocks. However, a formal temporal language is re-
quired for encoding complex behaviors. The advantage of expressing these behav-
iors as temporal logic properties is that the formal methods in computer science
can automatically check whether any biological system possesses these proper-
ties or not. More importantly, formal methods are used to reverse engineer the
values of logical parameters that satisfy these temporal properties [11,15]. Model
Checking technique is one of the formal verification method which has been used
widely for automated verification of complex systems. The model checking ap-
proaches can be differentiated on the basis of how they interpret the notion of
time. Linear or branching. Due to branching nature of CTL (Computation Tree
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Logic), it is naturally suited for non deterministic dynamical systems such as
GRNs, where a current state can have more than one successor states. Model
checking is not only useful to check biological properties of GRN but also to
establish and test new hypothesis and compute associated logical parameters.

In a CTL formula, > is always taken as true; ⊥ is always false; (vi = n) is
true iff expression level of variable vi, in current state, is equal to n. The CTL
formula combines a set of connectives: ¬(negation), ∧ (logical AND), ∨ (logical
OR) and ⇒ (implication) with temporal operators. The temporal operators are
pairs of symbols; the first element of which is A (all paths) or E (at least one
path), followed by X (next state), F (any future state) or G (all future states).

Definition 4. Let G = (V,E) be a GRN. The CTL Formula Φ on G is defined
as follows;

– atomic formulas are >, ⊥ or any atomic proposition of the form (vi = n),
where vi is a variable in state graph and n ∈ [0, `vi ].

– If φ and ψ are atomic formulas, then so are (¬φ), (φ∧ψ), (φ∨ψ), (φ⇒ ψ),
Xφ, EXφ, AGφ, EGφ, EFφ, AFφ, (Aφ

⋃
ψ) and (Eφ

⋃
ψ)

2.4 Sequential Algorithm

The sequential algorithm for parameter identification (Figure 2) comprises of
three main steps.

– First, the regulatory network is modeled using Thomas’ framework as labeled
directed graph.

– Secondly, list of all possible parameterizations is generated after application
of snoussi constraints [19], and behavioral properties are encoded in CTL
format according to definition 4. Based on an exhaustive enumeration, a
state graph is generated for each parameterization. The state graph and the
CTL property is supplied to model checker. If CTL property is satisfied, the
set of parameters are retained as accepted parameters.

– Finally, the set of all models/parameterizations that satisfy the given CTL
properties are returned as the output.

SMBioNet [11, 12] is based on Thomas’ formalism and implements the se-
quential approach for parameter identification. It has been used for the analysis
of several regulatory networks, including tail resorption in tadpole metamor-
phosis [12] and immunity control in bacteriophage lambda [15]. The details of
GRN and CTL properties are specified in the form of input file and the out-
put contains all models that satisfy these properties. For each parameterization,
it invokes NuSMV [8] for verification. On an abstract level, the functionality
of SMBioNet can be categorized into model generation phase and verification
phase. In model generation, it encodes the details of state graph into NuSMV
input format, whereas in verification phase, it calls NuSMV model checker. For a
complete GRN G = (V,E) on n variables, the complexity of SMBioNet is given
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Discrete Modeling
Framework

Model
Checking

Dynamics that Satisfy
CTL Properties

next parametrization

CTL PropertiesGRN

All parameterizations 
that Satisfy CTL

Properties

Fig. 2: Sequential Flow of Parameter Identification, Shaded stages are executed
in loop until all parameter combinations are verified using model checker. Finally,
all parameterizations for which CTL formula is satisfied are retained.

as (2n)(2
n), due to which it works for small networks, typically n < 7 [14]. In

order to understand, where most of the processing time is spent in sequential
algorithm, we obtain a profiling information by de-linking the model generation
and verification phases in SMBioNet and provide a model of MAL-Associated
GRN(Sec. 3.2) as input. The results indicate that more than 95% of total ex-
ecution time is spent in the verification phase. Therefore, the decomposition of
verification phase can lead to significant overall performance enhancement.

3 Parallel Approach

The parallel approach presented here, is based on the concept of Data Decompo-
sition. In classical theory of parallel computing, decomposition of of a problem
can be carried out with respect to partitioning of data, tasks or both [18]. A
technique that splits large data into subsets, and associates same operation with
different chunks of data, is known as Data Decomposition. It is clear from the
sequential algorithm that the parameterizations are exponentially large and for
each combination, a state graph is generated and verified against CTL prop-
erties. Since there is no dependency between the generation of any two state
graphs, it is possible to generate multiple state graphs from a list of parame-
ter combinations. These state graphs can be generated in parallel and supplied
to a model checking process for the purpose of verification. Keeping in view
this embarrassingly-parallel configuration, we employ a simple master-worker
model of computation, in which master process is responsible for pre-processing,
generation of state graphs and communication with worker processes, whereas
parameter identification is carried out by worker processes. We perform domain
decomposition on the set of all possible parameters ρ, to distribute the veri-
fication tasks among n worker processes w1, ..., wn. The algorithms for master
process is given as Algorithm 1 which starts by initializing three lists: ρ for stor-
ing all parameter combinations; ℘ to store only those combinations for which
CTL formula Φ is satisfied and < for storing state graphs generated from each
combination in ρ. The procedure build (line 4) performs pre-processing on GRN
G to generate complete list of all parameters after applying constraints. In a for
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loop (line 6-8), the master process generates a state graph for each parameter
combination and stores it in the <.

Algorithm 1: domain decomposition on parameterizations

Data: Gene Regulatory Network: G, CTL Formula: φ, Number of Worker
Processes: nw

Result: Set of all parameterizations satisfying φ
1 ρ← ∅ ;
2 ℘← ∅;
3 < ←− ∅;
4 ρ← build(G) ;
5 q ← length(param);
6 forall the elements of param do
7 remove an element j from ρ;
8 < ← generate(j) ;

9 foreach wi ∈ worker processes do
10 s← b(i ∗ q)/nwc ;
11 e← b((i+ 1) ∗ q/nwc)− 1 ;
12 send(<, s, e, wi)

13 foreach wi ∈ worker processes do
14 recv(℘,wi);

15 return ℘;

Given m state graphs < = (r1, .., rm), and nw worker processes, block-wise
decomposition partitions < onto nw blocks. Each block i, 1 ≤ i ≤ nw contains
consecutive elements with indices (bi.q/nwc , . . . , b(i+ 1).q/nw − 1c), where q is
the length of ρ. These indices represent share of each worker process wi, and is a
subset of <. A block of state graphs is sent to each worker process for verification
(line 12). Finally, when the verification is complete by worker processes, and the
set of acceptable parameterizations is generated by worker processes, master
process collects the results by calling a receive function (line 14). The algorithm
for each worker process wi is given as Algorithm 2, which starts by initializing
two lists: namely R ∈ <; for storing state graphs received from master process,
and selected; for storing accepted parameters after verification . In a for loop
(line 4-8), each worker process enumerates through all state graphs and invokes
model checker by calling procedure check (line 6) for verification of CTL formula
Φ. If the formula is satisfied, the paramter combination is retained in the list
selected. Finally, the set of accepted parameters are sent to master process (line
9).
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Algorithm 2: model checking for parameter identification

Data: CTL Formula Φ
Result: subset of all parameterizations satisfying Φ

1 R← ∅;
2 selected← ∅;
3 R = recv(R,master) ;
4 forall the elements of R do
5 remove an element s from R;
6 status = check(s, Φ) ;
7 if (status = verified) then
8 selected = getParam(s) ;

9 send(selected,master);

3.1 Implementation

We perform a prototype implementation of our presented approach by modi-
fying the existing implementation of SMBioNet to incorporate master-worker
model of computation, using OpenMPI [16]. Each process is assigned a rank,
which is used for distribution of workload. The model generation phase is im-
plemented as master process which generates all models, from input interaction
graph and set of all parameterizations. These models are written as input files
for NuSMV model Checker. The worker processes read these input models and
invoke NuSMV for verification. Each process calculates its share of workload,
based on the total number of parameterizations, its rank, and the number of
worker processes. However, verification of models can not be performed until
the models are generated. Instead of keeping this dependency as a serial com-
ponent in our implementation, we enforce a very small delay (few milliseconds)
in launching the worker processes so that sufficient number of models are acces-
sible by the time the worker processes are launched. In this way, we are able to
execute both model generation and verification concurrently.

3.2 Example 2 (Mal-associated regulatory network)

In order to check the scalability of our implementation, we apply it on MAL-
associated regulatory network [9]. In this network (Figure 3), Brutons Tyro-
sine Kinase (BTK) acts as a positive regulator of MAL. The Inflammatory
Cytokines (INCY) generate inflammation and also activate SOCS-1 which in-
hibits phosphorylated MAL and also degrades NF-kB expression. The parame-
ters associated with BTK: KBTK {} can take values in the range of {0, 1}; pa-
rameters associated with MAL: KMAL {}, KMAL {SOCS}, KMAL {BTK} and
KMAL {BTK,SOCS} can take values in the range of {0, 1}; parameters associ-
ated associated with SOCS: KSOCS {} and KSOCS {INCY } can take values in
the range of {0, 1}; parameters associated associated with INCY: KINCY {} and
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BTK

MAL

NFKB

SOCS

INCY

+1

-1

+1+1
-1

+2
+1

Fig. 3: MAL-associated Regulatory Network adopted form [9] The Numerals (1
and 2) show thresholds of interactions; Arrow labeled with + sign indicate acti-
vation while arrow labeled with - sign show inhibition. The direction of arrows
indicate the direction of activation/inhibition

KINCY {NFKB} can take values in the range of {0, 2}. Similarly, all param-
eters associated with NFKB: KNFKB {}, KNFKB {SOCS}, KNFKB {INCY },
KNFKB {MAL}, KNFKB {INCY, SOCS}, KNFKB {MAL, INCY, SOCS},
KNFKB {MAL, INCY } and KNFKB {MAL,SOCS}are in the range of {0, 1}.
This leads to a total combinations of 22 ∗24 ∗28 ∗22 ∗32 = 589824 parameteriza-
tions. After applying observability and snoussi constraints, the parameters are
reduced to 4320.

By using definition 4, we encode stable states reported in [9] as CTL formulas
(Figure 4) in SMBioNet input file. The first three properties, denoted as Φ(ini),
Φ(pat) and Φ(clr) represent initial, pathogenic and reset state respectively, in
state graph of Mal-associated regulatory network. The property Φ(α) : Φ(ini)→
EF (AG(pat)) shows a particular behavior of the system (state graph) that, from
initial state, pathogenic state is reachable in all paths. When this property is
verified using SMBioNet, only those models are selected which satisfy Φ(α).
Similarly, Φ(β) : Φ(ini)→ EF (AG(clr)) represents that systems is able to reach
a particular state where the expression level of all the variables is zero. The CTL
formula Φ = Φ(α)∧Φ(β) is only true when both these behaviors are present in the
system. Consequently, all models that satisfy Φ(MAL) are retained as accepted
set of parametrizations.

We encode CTL formula (Figure 4) in SMBioNet input file and execute us-
ing our modified parallel algorithm on 8 nodes of HPC cluster connected with
Infiniband interconnect. Each node has a dual quad-core processor with 24GB
of memory. The model is executed with 9 processes. The master process is desig-
nated as root process with rank 0, and the ranks of worker processes start from
1 to 8. The running time of the experiments is presented in Table 1. These ex-
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ϕ(ini)= (BTK=1&MAL=0&NFKB=0&SOCS=0&INCY=0)  (1)
ϕ(pat)= (BTK=0&MAL=0&NFKB=1&SOCS=1&INCY=2)  (2)
ϕ(clr)= (BTK=0&MAL=0&NFKB=0&SOCS=0&INCY=0)  (3)
ϕ(α): ϕ(ini)-> EF(AG(pat))   (4)
ϕ(β): ϕ(ini)-> EF(AG(clr))   (6)
ϕ(MAL)= ϕ(α) ϕ(β)    (7)v

Fig. 4: CTL formula to determine values of logical parameters in MAL-
Associated Regulatory Network, for two stable states reported in [9]

perimental results show that the approach is scalable, even for a relatively small
model, comprising of 5 genes. With increase in size of the network, granularity
will also increase and the approach is likely to work for large scale models.

Process Count Running Time (Sec.) Process Count Running Time (Sec.)
1 48.12 5 10.12
2 24.72 6 9.16
3 17.85 7 8.02
4 12.85 8 7.12
Table 1: Running Time of parallel algorithm on 8 processors

4 Conclusion and Future Work

In this paper, we presented a parallel approach to improve the efficiency of
parameter identification in GRN. Our main contribution is the parallelization of
sequential approach for parameter identification in GRNs by decomposition of
parameter space into subsets. The presented approach can be used for analysis
of large scale regulatory networks under parameter uncertainty. The presented
approach is part of our on-going research work for the development of efficient
parallel model checking techniques for verification of large scale GRNs, based
on René Thomas discrete formalism. In future, we plan to test the approach for
large scale models on HPC platform with more number of nodes, Moreover, we
plan to use light weight threads in combination with MPI processes for cluster
of multicore machines. In the current work, we have implemented our approach
using CTL based model checker. Recent progress in the area of LTL-based model
checking has demonstrated huge performance gains and our presented approach
can be tested with LTL based model checking.
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