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Abstract. Relation between codon usage and other biological phenom-
ena in living organisms, has been proved in previous researches. In ad-
vance, recently, it is shown that the codon usage of co-expressed and
co-function genes are similar. In this paper, we introduced a set of net-
works called codon usage equality networks, each network for an amino
acid. These networks represent codon usage similarities between genes.
We showed that, at least some of these networks have scale-free and
small world properties. Also we showed that betweenness centrality and
degree of network nodes are related proportionally. We also compared
the networks for different amino acids. We showed that among all codon
usage equality networks of different amino acids, networks corresponding
to amino acids “Proline”, “Valine”, and “Arginine” are more similar to
each other.

Keywords: Codon usage, Genome sequence pattern, Biological network, Bio-
logical network topology

1 Introduction

The codon degeneracy phenomenon, which is the phenomenon that more than
one codon may code for an amino acid, is discovered in 1965 [18]. It is shown
that there are tendencies in organisms to prefer some codons over the others
[17]. The frequency of appearance of a codon in comparison to other codons,
which are coding the same amino acid (synonymous codons), is called the codon
usage.

Although many researchers assign one codon usage to each organism, how-
ever, it is known that the codon usage for different genes within an organism are
different. This phenomenon was a motivation for a lot of further studies in this
area.

Many researches have reported the synonymous codon selection in human [5].
Three main mechanism are provided for this phenomenon, namely, translation
efficiency [12, 19], mRNA stability [6], and splicing control [19, 4]. It is known
that the speed of translation is proportionally related to the amount of available
tRNAs for the codons which are presented in the gene. That is because the
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translation process consists of some consecutive operations of finding appropriate
tRNAs for codons which are placed on mRNAs. Thus, codon usage and tRNA
abundance together control the translation rate [12].

Recently, Najafabadi, et al. showed that co-expressed and co-function genes
use similar ratios of codons for amino acids. They claimed that the organism
changes the abundance of tRNAs, and by this change controls the translation
rate of proteins [16].

The concept of networks is widely used in various aspects of biological stud-
ies, such as topological properties of protein-protein interaction (PPI) network,
metabolic network, transcription regulation network, signal transduction net-
work, and functional association networks [1]. The concept of networks is also
useful in some less popular biological areas such as, protein domain networks
which represent appearance of protein domains in different proteins [22], and
amino acid bounding networks which represent chemical bounds between amino
acids in a three-dimensional structure of a protein [10].

In this paper, we introduced the concept of “codon usage equality network”
for the first time. In contrast to the network representation of codon usage equal-
ities, previous studies focus on the similarities between genes, independently. By
considering similarities between gene codon usages independently, the distribu-
tion of equal codon usages and their relations are omitted. For example, con-
nected components in networks represent connectedness of genes with similar
codon usages, which is defined only when considering similarities as a network.
Also, topological analysis like analysis of clustering coefficients and betweenness
centralities is only possible for networks.

In this paper, we analyzed topological properties of codon usage equality
networks for different amino acids. Based on codon usage equality networks for
different amino acids, we provided a hypothesis that explains benefits of using
these codon usage equality networks in protein expression regulation.

2 Materials and Methods

2.1 Codon Usage Equality Network

The “codon usage equality network” is constructed based on the similarity be-
tween the codon usages of the genes. For example, consider the network for amino
acid a. In this network, nodes represent genes, and two genes are neighbors if
and only if they use similar ratios of codons for amino acid a.

In order to exactly specify the edges of the network, we need to clearly define
the concept of “using similar ratios of codons”. Let u and v be two nodes of the
network for amino acid a, which are representing genes gu and gv, respectively.
Also, suppose that, amino acid a has codons c1, . . . , ck. Number of occurrences
of codon ci in gene gv is represented as nv,ci . The codon usage corresponding
to gene gv is represented as cuv which is a vector of length k (the number of
codons that code for amino acid a) which is cuv[i] = nv,ci/

∑
j nv,cj . In this

equation,
∑
j nv,cj is the number of occurrences of all codons of amino acid a,
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thus, cuv[i] represents the percentage of occurrence of codon ci. Thus, we have∑
i cuv[i] = 1.

The likelihood ratio test statistic for two codon usages cuv and cuu isD(v, u) =
−2 ln (Ln/La), where Ln and La are maximum likelihood of the null and the al-
ternative models, respectively. In the alternative model, there is one parameter
for each variable cuv[i] and cuu[i]. According to the definition, maximum likeli-
hood for variables cuv[i] and cuu[i] are cuv[i]

nv,ci and cuu[i]nu,ci , respectively. In
the null model for each codon ci, there is one parameter which represents average
behavior of cuv[i] and cuu[i]. The maximum likelihood for this parameter in the
alternative model is (

nv,ci + nu,ci∑
j nv,cj + nu,cj

)nv,ci
+nu,ci

(1)

The maximum likelihood for each model is the product of maximum likelihood
for its parameters.

We computed the probability of a chi-squared distribution with k−1 degrees
of freedom to get a value less than D(v, u), and name this probability as p(v, u).
This is the p-value of not considering v and u as non-equal probability vectors.
We choose k − 1 as the degrees of freedom, because, we are testing equality of
two vectors of probabilities of size k, and in each vector of probability, the sum
of values is 1. Thus, the vector have k− 1 degrees of freedom. We say that these
two codon usages are similar if and only if p(v, u) < t for some threshold t. In
this paper, we used the threshold t = %5.

Note that, in analyzing codon usage equalities we ignored amino acids with
only one code. The codon usage for these amino acids, which are “Methionine”
and “Tryptophan”, is meaningless. Finally, we obtained 18 networks for 18 amino
acids.

2.2 Network Analysis

A network N is represented as N = (V,E) where V is the set of nodes (vertices)
and E is the set of edges. In this paper, we modeled the network as an undirected
network. Degree of a node v is the number of its neighbors and is represented as
dv. Network density is defined as the proportion of all possible edges which are
presented in the network, i.e. the density is e/(n(n−1)/2), where e is the number
of edges and n is the number of nodes of the network. A connected component of
a network is a subset of its nodes which are connected with one or more edges.

Distance between two nodes v and u is the number of edges in the shortest
path between these two nodes and is represented as d(v, u). Diameter of a net-
work is the maximum of all d(v, u) for v 6= u. Let eccentricity of a node v to
be the maximum of shortest paths between node v and all other nodes. Radius
of a network is the minimum of eccentricity of the nodes in the network. Char-
acteristic path length of a network is the average of shortest paths between all
possible pairs of nodes. Network centralization represents the extent to which
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nodes are more central than others and is computed as (see [14])

n

n− 2

(
max
v
{dv}/(n− 1)− e/(n(n− 1)/2)

)
(2)

Closeness centrality of a node v is

Cv = 1/
∑
u 6=v

d(v, u)

The closeness centrality represents that how far the node is from other nodes. A
node with high closeness centrality tends to be a node which has short distances
to all other nodes, while a node with low closeness centrality is a node which is
far from other nodes. Roughly speaking, the closeness centrality is high when the
node is almost the center of the network. The closeness centrality of a network
is the average of the closeness centralities of its nodes. Betweenness of a node v
represents the importance of this node in the formation of shortest paths in the
network. The betweenness B(v) is

B(v) =
∑
s,t

σs,t|v/σs,t (3)

where σs,t is the number of shortest paths between s and t, and σs,t|v is the
number of shortest paths between s and t which are passing through v. The
betweenness of a network is the average of the betweenness of its nodes.

The clustering coefficient of a node v is the ratio of the pairs of its neighbors
which are also neighbors. Thus, the clustering coefficient of v is

CC(v) =
|{s, t|s→ v, t→ v, s→ t}|

dv(dv − 1)/2
(4)

where v → u indicates that v is neighbor of u. Two neighbors of a node with high
clustering coefficient are highly likely to be neighbors. The clustering coefficient
of a network is defined as the average of clustering coefficients of its nodes, i.e.
CC =

∑
v CC(v)/n, where n is the number of nodes of the network.

Heterogeneity of a network represents how much the network tends to have
hubs, which are the nodes with high degrees in a network with low average
degree. The heterogeneity of a network is defined as (see [9])√ ∑

v d
2
v

(
∑
v dv)

2/n
− 1 (5)

A network is called scale-free if its degree distribution follows the power
law, i.e. P (k) ∝ kγ for k greater than some fixed value k0, where P (k) is the
proportion of the nodes with degree k.

We used the Gephi [3] software and developed python scripts and C++ ap-
plications to compute above mentioned statistics for the networks.
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2.3 Comparing Codon Usage Equality Networks of Amino Acids

We compared structure of codon usage equality networks of different amino acids.
First, for each pair of networks, we evaluated the correlation between presences
of edges in two networks, n1 and n2. We considered the presence of edges in the
first (second) network as a random variable X (Y ). Thus, xe = 1 (ye = 1) if and
only if the edge e is presented in the first (second) network.

Value of the correlation coefficient is a number in the range of -1 to 1. The
closer the correlation coefficient is to 1 or -1, the stronger the relation between
two random variables is. Positive values indicate positive linear relation, and
negative values indicate negative linear relation.

2.4 Dataset

In this paper, we studied the topology of the “codon usage equality network”
which is constructed based on codon usages of essential genes of Escherichia Coli.
First, we started by candidate essential genes of Escherichia coli which are the
genes unable to be deleted from the organism’s chromosomes [2]. 300 E. Coli
known genes are reported to be essential for it [2]. For these genes, we computed
the codon usage of each amino acid. Thus, for each gene, we had 20 codon
usages, for 20 amino acids. The sequence of the genes are gathered from the
CDS database of the EBI. In order to remove the bias of considering only one
strain of the E. Coli, we computed average codon usages of the sequenced genes
of all available strains.

3 Results

Fig. 1. Codon usage equality network for amino acid “Glutamic acid”.

The codon usage equality network for amino acid “Glutamic acid” is pre-
sented in Fig. 1. Supplementary materials of this paper is available online at
http://cbp.ut.ac.ir/cuen/.
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3.1 Codon Usage Equality Networks Are Scale-Free and
Small-World for Some Amino Acids

For each of 18 amino acids with more than one codon, we built a network. For
each, number of nodes, number of edges, network density, network heterogeneity,
number of connected components, network diameter, network radius, network
centralization, characteristic path length, average number of neighbors, and net-
work clustering coefficient are presented in Table 1. These network statistics
represent global topology of the network. As it could be seen in the table, clus-
tering coefficients of the networks are more than 0.6 for all amino acids, except
the amino acid “Alanine”. It means, the networks consist of some clusters with
high density of edges.

Table 1. General topological measures of the codon usage equality networks for dif-
ferent amino acids.
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C 3682 2 300 19405 0.433 0.671 1 2 1 0.571 1.567 129.367 0.886 1.567 84.817
D 23005 2 300 1218 0.027 2.164 1 2 1 0.979 1.973 8.120 0.898 1.973 145.440
E 29127 2 300 1396 0.031 1.912 1 2 1 0.975 1.969 9.307 0.909 1.969 144.847
F 13933 2 300 2346 0.052 2.167 1 2 1 0.954 1.948 15.640 0.974 1.948 141.680
H 8642 2 300 4335 0.097 1.596 1 2 1 0.909 1.903 28.900 0.971 1.903 135.050
K 21057 2 300 1056 0.024 0.729 44 13 0 0.044 3.710 7.040 0.909 2.074 23.803
N 15162 2 300 1550 0.035 1.088 62 8 0 0.080 1.664 10.333 0.917 1.323 4.667
Q 17686 2 300 2018 0.045 1.867 1 2 1 0.961 1.955 13.453 0.968 1.955 142.773
Y 10488 2 300 4526 0.101 1.620 1 2 1 0.905 1.899 30.173 0.970 1.899 134.413
I 24257 3 300 1849 0.041 1.995 1 2 1 0.965 1.959 12.327 0.903 1.959 143.337
A 40295 4 300 75 0.002 1.510 232 5 0 0.012 1.518 0.500 0.468 0.465 0.193
G 31098 4 300 334 0.007 1.786 175 12 0 0.053 3.403 2.227 0.675 1.104 10.783
P 17965 4 300 1599 0.036 3.173 1 2 1 0.971 1.964 10.660 0.965 1.964 144.170
T 20958 4 300 193 0.004 1.394 178 8 0 0.029 3.207 1.287 0.631 1.109 6.173
V 32623 4 300 431 0.010 5.987 1 2 1 0.997 1.990 2.873 0.916 1.990 148.063
L 40368 6 300 90 0.002 3.003 254 3 0 0.038 1.435 0.600 0.720 0.287 0.200
R 26438 6 300 1905 0.042 2.148 1 2 1 0.964 1.958 12.700 0.915 1.958 143.150
S 20913 6 300 378 0.008 6.817 1 2 1 0.998 1.992 2.520 0.912 1.992 148.240

Rows represent amino acids, sorted by the number of codons that code for the amino
acid. AA indicates amino acid. Two first columns, i.e. “Number of occurrences” and

“Number of codons” represent amino acid related properties, while the others
represent properties of the codon usage equality networks.

As it is shown in Table 1, number of edges of the networks for amino acids
“Alanine”, “Leucine”, and “Threonine” are few, i.e. less than number of vertices
minus one. As a consequence, these networks have more than one connected
components. The network for amino acid “Glycine” has also only a few number
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of edges more than 300. Interestingly, while two networks corresponding to amino
acids “Lysine” and “Asparagine” have a lot of edges, but they have more than
one connected components. Also, in comparison to other networks, these two
networks have low betweenness centralities. Note that, radius 0 for disconnected
networks represent undefined values.

The diameter of the networks for all the amino acids except “Glycine” and
“Lysine” are low, i.e. less than or equal to 8 which is the log2(300). This obser-
vation represents the small-world property of the codon usage equality networks.

We tested whether the networks are scale-free or not. We fitted a power
law function P (k) ∝ kγ to the degree distribution and evaluated the goodness
of fit. We used the method which is provided by Clauset, et al. [7] to check
whether degrees of a network is power law distributed or not. We tested this
property for each codon usage equality network and reported γ and p-values
in Table 2. Low p-value, for example less than %5, indicates that the test re-
jects the hypothesis that the original data could have drawn from a power-law
distribution. Thus, for 10 amino acids “Alanine”, “Aspartic acid”, “Glutamic
acid”, “Glycine”, “Lysine”, “Leucine”, “Proline”, “Serine”, “Threonine”, and
“Valine”, we cannot reject the hypothesis that the degree distribution is power-
law. Among these 10 networks, 4 networks are the networks with a few number
of edges (see Table 1). From two disconnected networks with high number of
edges, the network for amino acid “Lysine” follows, and the network for amino
acid “Asparagine” does not follow the power-law. The high value of γ for the
network of amino acid “Lysine” may be due to its high number of components.

Table 2. Fitting the power law function P (k) ∝ kγ to the degree distribution of codon
usage equality networks for different amino acids.

AA γ p-value AA γ p-value AA γ p-value
A 3.00 1.00 H 2.64 0.00 Q 3.90 0.00
C 2.00 0.00 I 5.28 0.01 R 2.61 0.00
D 6.68 0.22 K 141.79 1.00 S 1.63 0.51
E 4.93 0.14 L 3.00 1.00 T 3.00 1.00
F 2.30 0.00 N 3.27 0.00 V 1.71 0.96
P 2.74 0.56 G 3.00 1.00 Y 2.43 0.00

AA indicates amino acid. P-value shows the level of confidence for rejecting the
hypothesis that the degrees are drawn from a power-law distribution.

The distribution of degrees for 18 amino acids are presented in Fig. 2.

3.2 Proportional Relation of Betweenness Centrality and Degree

Betweenness centrality of the networks are computed for each node. We fitted
the function y = axb to the graphs representing betweenness centrality versus
node degrees for different amino acids, where y is the node’s betweenness cen-
trality and x is the node’s degree. P-values and R-squared value of the fitness
is presented in Table 3. Resulting p-values show that, for all amino acid except
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Fig. 2. Degree distribution of 18 amino acids in codon usage equality network of E.
Coli essential genes.

“Alanine” and “Asparagine” the betweenness of the network nodes are propor-
tionally related to the degrees, with p-value less than %1. As it is shown in this
table, for networks corresponding to amino acids “Cysteine”, “Phenylalanine”,
“Histidine”, “Leucine”, “Proline”, “Serine”, “Valine”, and “Tyrosine” the value
R2 is higher than 0.8, i.e. %80 of the relation between betweenness centralities
and degrees of nodes could be evaluated for these networks. Among the discon-
nected networks, only the network for amino acid “Leucine” have R2 more than
0.3.

Table 3. Fitting a power law function, in the form y = axb, to the relation between
betweenness centralities and degrees of nodes.

AA a b p-value R2 a b p-value R2 a b p-value R2 a b
A 2.719 -0.123 0.903 0.001 0.000 3.263 0.000 0.891 0.000 2.236 0.000 0.772 0.007 1.887
C 0.000 6.416 0.000 0.994 0.009 1.989 0.000 0.546 0.040 1.833 0.000 0.736 0.000 1.627
D 0.067 1.361 0.000 0.328 0.267 1.842 0.002 0.095 6.604 2.483 0.000 0.943 0.000 2.057
E 0.064 1.227 0.000 0.200 0.633 1.388 0.000 0.868 0.000 2.083 0.000 0.322 0.958 0.814
F 0.001 2.727 0.000 0.831 5.899 -0.152 0.771 0.002 1.938 2.600 0.000 0.952 0.016 1.412
G 0.991 1.298 0.000 0.231 0.001 2.778 0.000 0.930 0.005 3.297 0.000 0.899 0.000 2.401

AA indicates amino acid. P-value shows the level of confidence for the data to be
fitted to the power-law distribution.

3.3 Similarity of Codon Usage Equality Networks

We computed the correlation coefficient between codon usage equality networks,
and presented the results in Table 4. No entry in this table is less than -0.01,
it means that there is almost no negative relation between presences of edges
between any two networks.

In Table 4, networks of amino acids “Alanine”, “Glycine”, “Leucine”, and
“Threonine” which have a few number of edges (see Table 1) have low value
(less than 0.1) of correlation coefficients with other networks. Also, networks
for amino acids “Asparagine” and “Lysine” which are disconnected networks
are not similar to any other network with correlation coefficient more than 0.1.
Interestingly, the correlation coefficients between these 6 networks are also less
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than 0.1. The only connected network which is not similar to any other network
with correlation coefficient more than 0.1 is the network corresponding to amino
acid “Serine”. On the other hand, networks for amino acids “Aspartic acid”,
“Phenylalanine”, “Isoleucine”, “Histidine”, “Proline”, “Arginine”, “Valine”, and
“Tyrosine” are similar to 1, 1, 1, 3, 1, 2, 3 and 1 other networks with correlation
coefficient more than 0.2, respectively. Highest values of correlation coefficients
are between networks of amino acids “Valine” and “Proline”, and amino acids
“Valine” and “Arginine”, which are 0.35 and 0.32.

4 Discussion

In this paper, for the first time, we introduced the concept of codon usage equal-
ity network. We built the codon usage equality network of E. Coli essential genes.
These genes could represent elements of biological pathways which do not have
alternatives. Consequently, their biological properties could be a representative
of all the genes, and all the essential pathways may contain at least one of these
genes.

Although there are some objections about the protein-protein interaction
networks of C. elegans, D. melanogaster, and E. Coli to be best fitted to a power
law function, but, this property holds for these networks at least approximately
[20]. Also, properties of the protein-protein interaction network between essential
genes of E. Coli is studied and it is shown that this network is also approximately
scale-free [13]. The facts that clustering coefficients of the networks are high,
diameters of the networks are low, and average distances between nodes are
low (see Table 1) show that codon usage equality networks of E. Coli essential
genes have small-world properties, at least for all amino acids except “Glycine”,
“Lysine”, and “Threonine”.

As it is shown in Table 4, codon usage equality networks are not very sim-
ilar to each other. On the other hand, since the correlation coefficient between
networks are not less than -0.01, networks are not negative of each other. As
a conclusion, we can state that the networks for different amino acids contain
almost independent set of edges.

4.1 Comparison with previous works

Some previous works on codon usage analysis have shown relations between
codon usages and properties of genes and proteins. For example, Najafabadi, et
al. considered co-expressed proteins. They showed that the similarity between
codon usages of co-expressed genes is more than the similarity between two ran-
dom genes. This result could be restated as a fact about the networks. Consider
two networks, first, the codon usage similarity network between genes, and sec-
ond, the network between genes representing co-expressed genes. Najafabadi,
et al. [16] showed that if we partition the co-expressed genes network to some
sub-networks with maximum edge densities, the density of edges of the codon
usage similarity network in these sub-networks are higher than other random
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sub-network partitioning. Roughly speaking, they showed that the codon usage
equality network is more similar to co-expressed genes network than a random
network. Also, they found the same result for co-function genes. In this study, in
contrast, we directly considered the codon usage equality network, and evaluated
its topological properties.

Some previous research works consider similarities/dissimilarities between
codon usages of genes independently [15]. However, relations between codon
usage similarities are not studied yet. We showed in this paper that codon us-
age equality networks have scale-free and small-world properties. These are the
properties which are only present in networks.

In contrast to the non-network based approach, considering similarities as a
network may reveal important properties of codon usages. For example, distri-
bution of codon usage may affect structure of the networks. Betweenness cen-
tralities are different between a network which is constructed from completely
random codon usages and a network which is constructed from codon usages
with some specific preferences. Thus, by this method we can understand codon
usage preferences of organisms.

Table 4. Correlation coefficient between codon usage equality networks for different
amino acids.

A C E D G F I H K L N Q P S R T V Y
A 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00
C 0.00 1.00 0.05 0.06 0.04 0.09 0.10 0.10 0.00 0.04 0.07 0.11 0.19 0.10 0.11 0.02 0.07 0.16
E 0.00 0.05 1.00 0.23 0.00 0.03 0.17 0.02 0.00 0.03 0.01 0.02 0.02 -0.01 0.01 0.00 -0.01 0.11
D 0.00 0.06 0.23 1.00 0.00 0.03 0.20 0.03 0.01 0.02 0.02 0.01 0.02 -0.01 0.02 0.00 0.02 0.14
G 0.00 0.04 0.00 0.00 1.00 0.01 0.03 0.05 0.00 0.03 0.04 0.00 0.05 0.05 0.03 0.02 0.00 0.04
F 0.00 0.09 0.03 0.03 0.01 1.00 0.02 0.21 0.02 0.00 0.04 0.02 0.03 0.00 0.13 0.00 0.00 0.03
I 0.00 0.10 0.17 0.20 0.03 0.02 1.00 0.01 0.01 0.04 0.04 0.01 0.18 0.00 0.04 0.02 -0.01 0.21
H 0.01 0.10 0.02 0.03 0.05 0.21 0.01 1.00 0.03 0.02 0.07 0.03 0.14 0.02 0.24 0.01 0.21 0.11
K 0.00 0.00 0.00 0.01 0.00 0.02 0.01 0.03 1.00 0.00 0.01 -0.01 0.00 0.00 0.02 0.00 0.01 0.00
L 0.00 0.04 0.03 0.02 0.03 0.00 0.04 0.02 0.00 1.00 0.08 0.01 0.04 0.01 0.02 0.02 0.02 0.05
N 0.00 0.07 0.01 0.02 0.04 0.04 0.04 0.07 0.01 0.08 1.00 0.01 0.05 0.04 0.05 0.00 0.03 0.08
Q -0.01 0.11 0.02 0.01 0.00 0.02 0.01 0.03 -0.01 0.01 0.01 1.00 0.19 0.00 0.03 0.02 0.02 0.04
P 0.00 0.19 0.02 0.02 0.05 0.03 0.18 0.14 0.00 0.04 0.05 0.19 1.00 0.00 0.19 0.02 0.35 0.13
S 0.00 0.10 -0.01 -0.01 0.05 0.00 0.00 0.02 0.00 0.01 0.04 0.00 0.00 1.00 0.04 0.01 0.00 0.00
R 0.00 0.11 0.01 0.02 0.03 0.13 0.04 0.24 0.02 0.02 0.05 0.03 0.19 0.04 1.00 0.04 0.32 0.02
T 0.00 0.02 0.00 0.00 0.02 0.00 0.02 0.01 0.00 0.02 0.00 0.02 0.02 0.01 0.04 1.00 -0.01 0.02
V 0.00 0.07 -0.01 0.02 0.00 0.00 -0.01 0.21 0.01 0.02 0.03 0.02 0.35 0.00 0.32 -0.01 1.00 0.00
Y 0.00 0.16 0.11 0.14 0.04 0.03 0.21 0.11 0.00 0.05 0.08 0.04 0.13 0.00 0.02 0.02 0.00 1.00

4.2 Benefits of using non-similar codon usage equality networks in
protein expression regulation

The codon usage is known to be a factor for controlling the level of proteins [12,
8, 11, 19]. The speed of translation is proportional to the number of codons and
amount of available tRNAs for those codons. For example, the translation of a
gene containing a lot of codons with low amount of available tRNAs would be
very slow. Thus, an organism may control the speed of translation by changing
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the amount of available tRNAs for different codons [16]. However, two genes
with similar ratios of codon for an amino acid, could not be distinguished by
this mechanism. These genes, in our study, are modeled as neighboring nodes in a
codon usage equality network. Besides, if two genes have different ratios of codons
for an amino acid, by controlling the amount of available tRNAs for that amino
acid, the organism may control the amount of available corresponding proteins.
Considering the results we presented in this paper, which show that the networks
for different amino acids have independent set of edges, the organism have the
freedom to change the ratio of codons for different amino acids independently,
and differentiate between more genes.

We presented an example to illustrate the benefits of having non-equal codon
usage equality networks, for different amino acids. Consider an amino acid X,
with four codons. The organism may change the amount of available tRNAs
for these four codons, and consequently, may control the expression level of
corresponding proteins. Note that, the organism is not able to change the ratio
of protein expression levels for proteins with similar codon usage, in amino acid
X, by changing the amount of tRNAs. According to the definition of the codon
usage equality network, the genes with similar codon usages form a cluster in
the codon usage equality network of the amino acid X. In this case we say
the organism is able to differentiate between clusters of genes, in the ratios of
expression levels, by controlling the amount of available tRNAs for different
codons.

Suppose that the organism can differentiate between three clusters of genes
by amino acid X, or equally, suppose that there are three clusters of genes in the
codon usage equality network of amino acid X. Also, suppose that the organism
can differentiate between 10 clusters of genes by controlling the amount of tRNAs
for amino acid Y , and networks of amino acid X and Y are independent. Since
the codon usage equality network for amino acid Y is independent of the network
of the codon usage equality for amino acid X, by controlling the ratio of tRNAs
for amino acids X and Y simultaneously, the organism is able to distinguish
between 30 clusters of genes. This is a very good advantage which is a result
of using independent codon usage equality networks. Although this statement is
true in theory, since the networks are not perfectly independent, the organism
may not practically be able to distinguish between exactly 30 clusters of genes,
but, having more independent gene equality networks gives the organism more
freedom to distinguish between more clusters of genes.

As future works, we will study mechanisms behind formation of codon usage
equality networks. Mechanisms that lead to formation of networks with similar
properties as codon usage equality networks is studied previously [21]. We will
check these formation mechanism and their validities for codon usage equality
networks.
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