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Abstract. 
The authors present the use of Wavelet Transform, using a quadratic spline 

function, and Probabilistic Neural Network (PNN) to classify 8 heartbeat condi-
tions. The process consists of four mains stages. The first part consists of pre-
processing a nd f iltering selected ECG l ead II (D II) data re gisters f rom t he 
PhysioNet repository. The filtered signal is fed to a w avelet transform process 
using a  quadratic s pline f unction, to obtain a  f eature v ector. T he r esults ar e 
transferred to a Probabilistic Neural Network algorithm for heartbeat classifica-
tion. Finally, the algorithm is tested with confusion matrices to determine clas-
sification accuracy. The algorithm yielded a 9 1.5%, 90.3% and 95.5% classifi-
cation accu racy f or au ricular f ibrillation, s inoauricular h eart block an d p arox-
ysmal atrial fibrillation conditions respectively. The lower scores were obtained 
for p remature at rial co ntraction and premature v entricular co ntraction condi-
tions (75.5% and 69.9% respectively). However, considering the validation test 
conditions, the results suggest the algorithm is suitable for on-line classification 
of heartbeat conditions as part of a DSP-based Holter device.  

1 Introduction 

Cardiovascular disease prevails as one of the main causes of death worldwide. In 
turn t achyarrhythmic events are associated with a large p ercentage o f sudden d eath 
cases [1]. Cardiac arrhythmia o ccurs intermittently which difficults early d iagnosis. 
Amongst the c linical methods used for measuring cardiac act ivity the electrocardio-
gram (ECG) continues to be a cost-effective method for elucidating heart condition 
[2-3]: cardiac act ivity is recorded non-invasively by means of a s et of electrodes at-
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tached to the thorax and/or limbs of the patient. The resulting data record is constitut-
ed by a s equence of waves the represent the propagation of impulses throughout the 
heart: P, Q, R, S, T and U waves (Fig. 1) and can be related to specific cardiac condi-
tions. 

 
Fig. 1. Characteristic (normal) ECG signal. 

1.1 Arrythmia 

The t erm “arrhythmia” is as sociated w ith ch anges o f f requency, r hythm o r mor-
phology of the ECG signal in comparison with normal ECG values. Diseases or dis-
orders of the heart (cardiopathies) are reflected in the ECG signal [4].  In general, and 
in a very simplified manner, identifying arrhythmias from the ECG records involves 5 
mains st eps: measure heartbeat f requency, measure t he t ime el apsed b etween co n-
secutive R waves (RR i nterval), examine the P  wave, measure the t ime interval be-
tween the P and R waves (PR interval), and measure the QRS complex duration and 
morphology. 

1.2 Arrythmia classification 

Although many o f the p hysiological p rinciples that originate the E CG s ignal a re 
fairly w ell un derstood, in au tomatic a nalysis p rocesses, it is  d ifficult to  d etermine 
exactly the beginning and the end of each component. After filtering, the first part of 
the ar rhythmia cl assification process co nsists o f d elimiting each  wave co mponent. 
Many analysis methods directed towards automatic heartbeat classification have orig-
inated from QRS complex signal processing methods [5], because represents the most 
prominent feature o f the ECG s ignal and bears great importance for d iagnostic pur-
poses. QRS complex delineation is another t ype of  algorithms aimed at identifying 
peaks, beginning and end of P and T waves [6]. Amongst the methods used to obtain 
ECG signal components, the wavelet transform (WT) is a common choice.  
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1.3 Wavelet Transform 

Performing the wavelet transform on a g iven signal can be considered as a l ineal 
operation to  o btain a  ti me-frequency co mponent r epresentation at  d ifferent s cales. 
Consider Ψ(x) as a function of real or complex values in Hilbert space L2(R), where L 
represents the vector space of square-integrable functions and satisfies the admissibil-
ity condition so that (1): 

 ∫ 𝜓(𝑥)∞
−∞  𝑑𝑥 = 0 (1) 

One of the properties of the wavelet transform is that it can be scaled (2): 

 𝜓𝑠(𝑥) = 1
𝑠 
𝜓 �𝑥

𝑠
� (2) 

The scale factor, s, dilates (s>0) or contracts (s<0) the wavelet function. Thus a con-
tinuous wavelet transform representation of function f(x) ϵ L2(R) is (3): 

 𝑊𝑠𝑓(𝑥) = 𝑓(𝑥) ∗ 𝜓𝑠(𝑥) = 1
𝑠 ∫ 𝑓(𝑡) �𝜓 �𝑥−𝑡

𝑠
�� 𝑑𝑡∞

−∞  (3) 

where t is the translational factor, and corresponds to  the time-domain convolution 
of f(x) and the basis function. From (3) the wavelet transform result depends on scale 
parameter s . In o rder to implement the wavelet transform on a  computing device to 
operate on real data, it is necessary to use a fast discrete wavelet transformation. Giv-
en the scale factor s=2j where j ϵ Z, and Z is the set of all integers, yields the binary or 
dyadic wavelet transform [7]; assigning s to be multiples of two, results in a discrete 
binary wavelet transform implementation suitable for digital signal processing appli-
cations. The discrete wavelet transform of a digital signal f(n) can be calculated using 
(4) and (5): 

 𝑠2
𝑗𝑓(𝑛) = ∑ ℎ𝑘𝑠2

𝑗−1𝑓(𝑛 − 2𝑗−1𝑘)𝑘 𝜖 𝒁  (4) 

 𝑊2
𝑗𝑓(𝑛) = ∑ 𝑔𝑘𝑠2

𝑗−1𝑓(𝑛 − 2𝑗−1𝑘)𝑘 𝜖 𝒁  (5) 

where 𝑠2
𝑗𝑓(𝑛) are approximation coefficients, 𝑊2

𝑗𝑓(𝑛)represent detail coefficients 
(2j scale w avelet transform o f f(n)) a nd n is t he s ample number. The terms 
{ℎ𝑘 , 𝑘 𝜖 𝒁}and  {𝑔𝑘 , 𝑘 𝜖 𝒁} correspond to low pass (H(W)) and high pass (G(W)) coef-
ficients r espectively. A number o f wavelet functions for heartbeat classification ar e 
continuously r eported, i ncluding t he H aar wavelet ( Fig. 2 A) [ 8], t he M exican h at 
wavelet (Fig. 2B) [9], the Morlet wavelet (Fig. 2C) [10] quadratic wavelet spline de-
rived from a Gaussian function (Fig 2D) and combination of wavelet functions [11]. 
In particular, quadratic wavelets have shown acceptable time and frequency resolution 
when applied to ECG analysis [12], and suitability for implementation on dedicated 
processing hardware [13]. The quadratic wavelet used in this work to obtain the ECG 
fiducial marker and feature arrays, is derived from a Gaussian function (Fig. 2D) for 
compact support (6): 
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Fig. 2. Examples of reported wavelet functions used in ECG signal analysis. A) Haar, B) Mexi-
can hat, C) Morlet and D) quadratic wavelets. 

 𝐺(𝑥) = 𝑥
2 𝜋
𝑒−

𝑥2
2  (6) 

1.4 Probabilistic Neural Network (PNN). 

Identifying single wave components is only one of the tasks involved in arrhythmia 
classification. T he n ormal c lassification p rocedure continues b y transferring t he r e-
sulting f eature ar ray t o s ome cl assifier. T hus, amongst t he classifiers reported for 
arrhythmia classification are Artificial Neural Networks [14], Multi-layer perceptron 
[15], Radial Basis Functions [16], Fuzzy Network [17], Expert Systems [18], Support 
Vector M achine and P article Swarm O ptimization [ 19], Se lf-Organizing Maps [ 20] 
and Probabilistic Neural Network [21-22]. The PNN architecture is in essence a back-
propagation network, but the activation function is  derived f rom s tatistical data ( i.e. 
exponential function) and can be considered as Parzen-based classifier that asymptot-
ically approximates a B ayesian classifier (Fig. 3 ). The pattern and classes layers re-
quire s upervised k nowledge to co rrectly co nnect t he each p attern l ayer n ode t o t he 
corresponding class layer node (Sparsely Connected Layers). The aim is to classify 
the n th dimension feature vector Xi, according to some predefined class CM. A c om-
mon procedure normalizes the weights, WN, as (8): 

 𝑊𝑘 = 𝑋𝑘
‖𝑋𝑘‖

            𝑘 = 1,2, …𝑁 (7) 
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Fig. 3. Probabilistic Neural Network (PNN). 

where Wk corresponds to the Pk
th node, and Xk ≠ Xi is the training vector. The Pk pat-

tern layer output, Ok, (9): 

 𝑂𝑘 = 𝑒�
𝑍𝑘−1
𝜎2

� (8) 

where the width of the Gaussian function, σ, is selected to control the exponential 
activation function scale factor. Ok is the exponential kernel result operating over the 
dot product between the kth training vector and the Xi vector to be classified, Zk, (10): 

 𝑍𝑘 = 𝑊𝑘
𝑇 𝑋𝑖
‖𝑋𝑖‖

 (9) 

The AM functions are defined as (10): 

 𝐴𝑀𝑘 = �1 𝑊𝑘   𝜖  𝐶𝑀
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (10) 

and the SM array contains the equivalent proportional probability estimates (11): 

 𝑆𝑀 = ∑ 𝑂𝑘  𝐴𝑀𝑘
𝑁
𝑘=1  (11) 

1.5 WT/PNN reported results 

There are indications that the use of algorithms based on WT for wave component 
identification an d P NN f or c lassification can  b e u sed f or arrhythmia cl assification. 
Lin et al. [23] reported a h igh detection success rate (100%) for a single arrhythmia 
(Ventricular premature contraction) although the success rate diminishes (94%) when 
two or more arrhythmias are present. Ebrahimnezhad and Khoshnoud [21] reported 
92.9% detection accuracy for four types of arrhythmias using PNN and linear predic-
tive coefficients. Yu and Chen reported a 99% detection success rate for six heartbeat 
conditions [ 22]. In t his work t he a uthors p resent a  Q WT/PNN procedure, d irected 
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towards c lassifying e ight heart b eat c onditions: no rmal s inus r hythm ( N), auricular 
fibrillation ( AF), p remature a trial contraction ( PAC), left b undle b ranch b lock 
(LBBB), right b undle b ranch block ( RBBB), premature ve ntricular contraction 
(PVC), sinoauricular heart block (SHB) and paroxysmal atrial fibrillation (PAF). 

2 QWT/PNN arrhythmia classification procedure 

  The arrhythmia classification method presented here conforms to the common prin-
ciples of classification; a wavelet transform is used to determine a feature array which 
is transferred to a PNN classifier. However, in order to prepare the ECG it is neces-
sary t o c onduct f urther p re-processing o perations. M easured E CG s ignals r egularly 
include various artifacts (Fig 3A). 

 
Fig. 4. Schematic diagram of the QWT/PNN arrhythmia classification process. A) The baseline 
of the original ECG signal B) is restored using a wavelet denoising process. C) The signal is 
filtered and D) transferred to the QTW section. E) A similar process is applied to the reference 
signal to obtain a set of threshold values. G) The QWT processed results in a set of H) fiducial 
markers and I) feature array. J) The PNN can then issue a r esult for K) arrhythmia classifica-
tion. 

For instance sweat, thorax movement (breathing) and patient activity result on poor 
electrode contact and displacement o f the ECG s ignal from the baseline ( isoelectric 
line). In order to restore the ECG baseline the process starts with a wavelet denoising 
operation (Fig 3B). The restored signal is then low-pass filtered to limit the bandwidth 

Proceedings IWBBIO 2014.  Granada 7-9 April, 2014 1748



to 250  Hz, a nd band-reject filtered to reduce the ef fect o f t he mains ( 50 or 60 H z, 
selectable) (Fig 3C). The filtered signal is then transferred to the QWT section (Fig. 
3F). In a similar manner, the reference ECG signal is processed (Fig. 3E) to determine 
a set of threshold values (Fig 3F) as the basis to obtain the fiducial marker array (Fig 
3H) and thus the feature array (Fig. 3I). The results are transferred to the PNN (Fig. 
3J) which produces the arrhythmia classification results. 

3 Experimental test procedure 

The availability of arrhythmia databases has contributed to development of ECG 
signal processing algorithms. In particular the MIT /BIH database [24] has proved and 
invaluable tool [25] for testing arrhythmia classification methodologies. The method 
presented in section 2, was coded in MATLAB and tested using seventeen 30-minute 
ECG lead II (D II) data registers from the PhysioNet repository: 100, 101, 103, 105, 
106, 118, 119, 201, 202, 203, 205, 207, 209, 210, 213, 215 y 219. The algorithm op-
erates over 6-second d ata blocks. The wavelet co efficients were s elected t o fit four 
scale bandwidths (Table 1). Table 2 describes the parameters used for feature extrac-
tion.  

Table 1. Bandwidth correspondence to scale levels used 

Scale Bandwidth 
2¹ 31 to 94 Hz. 
2² 16 to 39 Hz. 
2³ 8 to 26 Hz. 
24 4 to 12Hz. 

Table 2. Parameters for feature extraction 

Parameter 1st beat  ........ Nth beat 
Number of P waves 0,1,2....  ........ 0,1,2.... 

P wave polarity -1 negative, 1 positive 
0 more than 1 P wave  ....... -1 negative, 1 positive 

0 more than 1 P wave 

QRS duration Time (s)  ........ Time (s) 
 PR interval Time (s)  ........ Time (s) 

Position of R Referenced to the beginning of 
the segment  ........ Referenced to the beginning of the 

segment 

RR interval Time (s) ......... Time (s) 
HR Beats / minute .......... -- 

Global rhythm 0 abnormal, 1 normal .......... --- 

 
Classes are assigned per type of heartbeat condition: auricular fibrillation (AF)=1, 

normal s inus r hythm ( N) = 2 , p remature at rial co ntraction ( PAC)=3, l eft b undle 
branch block (LBBB)=4, right bundle branch block (RBBB)=5, premature ventricular 
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contraction (PVC)=6, sinoauricular heart block (SHB)=7 and paroxysmal atrial fibril-
lation (PAF)=8. 

4 Results 

   Single wave identification is based on detection of maximum and minimum values 
and zero cr ossing detection w ith respect to t he isoelectric line [26]. Fig. 4 shows a  
typical wave identification result over a six second period. Table 3 shows a summary 
of the results used to feed the PNN. 

 
Fig. 4. Example result from the wave identification process (record 202). 

Table 3. Summary of the example test results 

 Heartbeat Feature 

array Parameter 1st 2nd 3rd 4th 5th 

# of P waves 1 1 1 1 2 3 

P  polarity 1 1 1 1 0 7 

QRS duration 0.0840 0.0840 0.0920 0.0840 0.0840 1 

PR Interval 0.1760 0.1280 0.1360 0.1320 0.1200 1 

R location 0.9800 2.1480 3.3920 4.6280 5.8040  

RR Interval 0.7520 1.1680 1.2440 1.2360 1.1760  

HR 1      

Rythm 0     0 

    
The feature array is t ransferred to the PNN which produces the probability for each 
arrhythmia. The results are used to issue a classification confidence factor, CF (12):   

 CF= 1 − 𝑒−
(𝑃1−𝑃2)

𝑃2  (12) 

Proceedings IWBBIO 2014.  Granada 7-9 April, 2014 1750



where P1 is the highest probability and P2 is second highest probability. Table 4 shows 
a s ummary o f the cl assification r esults, in dicating d etection o f premature au ricular 
contraction with a 100% confidence factor.  

Table 4. Summary of classification results for the example data set. 

Heartbeat condition PNN output Confidence factor CF 

AF 1.2983e-04  
N 1.4244e-14  

PAC 99.9999 100% 
LBBB 3.8343e-15  
RBBB 1.2438e-19  
PVC 5.7963e-16  
SHB 6.1052e-285  
PAF 4.3960e-190  

 
The an alysis p rocess i s r epeated f or al l r ecords u sing 6 -second c ontiguous da ta 

sets. A confusion matrix is used to show the classification score of a p articular class, 
referenced to the rest of classes (Table 5). 

Table 5. Classification results (confusion matrix)  

 AF N PAC LBBB RBBB PVC SHB PAF 

AF 91.5% 1.8% 2.8% 1.3% 0.0% 1.5% 0.0% 1.1% 
N 0.7% 96.8% 1.6% 0.3% 0.0% 0.2% 0.4% 0.0% 

PAC 9.9% 5.3% 75.5% 0.0% 0.7% 4.0% 4.6% 0.0% 
LBBB 0.0% 0.0% 0.0% 91.1% 7.8% 0.6% 0.6% 0.0% 
RBBB 1.7% 0.0% 0.9% 7.3% 86.6% 3.4% 0.0% 0.0% 
PVC 3.9% 9.7% 13.5% 0.0% 1.2% 69.9% 1.9% 0.0% 
SHB 0.0% 9.7% 0.0% 0.0% 0.0% 0.0% 90.3% 0.0% 
PAF 0.0% 0.0% 4.5% 0.0% 0.0% 0.0% 0.0% 95.5% 

 
  When a single arrhythmia is present in the test signal, the classification accuracy is 
high. However, when there is more than one arrhythmia condition present, the classi-
fication accuracy degrades. The lower scores were obtained for premature atrial con-
traction and p remature ventricular contraction conditions (75.5% and 69.9% respec-
tively). H owever, t he a lgorithm yielded a  91. 5%, 90. 3% a nd 95. 5% c lassification 
accuracy for au ricular f ibrillation, s inoauricular h eart b lock an d p aroxysmal at rial 
fibrillation conditions respectively.  

5 Conclusions 

In comparison with previous reported works, the confusion matrix tests the classi-
fication accu racy a nd s uggest d ecreased accu racy, b ut may r eflect a more r ealistic 
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result. When two or more arrhythmia conditions are present in the test signal the accu-
racy d ecreases co nsiderably. For in stance, PVC r esulted difficult to  d etect d ue to a 
small RR interval; the effect is also related to AF. A factor that may have influenced 
the low d etection scores, i s t he reduced number of d ata set u sed for training. Thus 
there is room for improvement by increasing the number of training data sets. The six-
second ECG data length was selected bearing in  mind a lgorithm implementation on 
dedicated DSP hardware; i t i s necessary to i nvestigate t he e ffectiveness a nd robust-
ness of the algorithm for different amounts of data. The inherent nature of the digital 
signal processing operations involved suggest that the method is suitable for implanta-
tion on a portable ECG data acquisition devices. Coding the algorithm in MATLAB 
allows rapid functional verification. However, it is necessary to develop the appropri-
ate code, optimized for specific DSP hardware. Nevertheless, i t was shown that t he 
procedure presented h ere can  p erform E CG cl assification on s ignals where t here i s 
more than a single arrhythmia condition.  
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