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Abstract. Epilepsy is a brain disorder characterized by transitions from
normal (interictal) activity to seizure activity (ictal). These transitions
are unpredictable and little is known about the mechanisms that triggers
them. In this article we use a computational modelling approach com-
bined with in vivo electrophysiological data obtained from pilocarpine
model of epilepsy to infer about changes that may lead to a seizure, spe-
cial emphasis is done in analyzing parameters changes during or after
pilocarpine administration. A cubature Kalman filter is utilized to esti-
mate parameters and states of the model in real time from the observed
electrophysiological signal.

Keywords: Cubature Kalman Filter, Epilepsy, Neural Mass Model, Pi-
locarpine, Population Model, Real Time Parameter and States Estima-
tion, Status Epilepticus.

1 Introduction

Epilepsy is a brain disorder characterized by recurrent seizures affecting 2-5% of
world’s population. Seizures are generated by abnormal, hypersynchronic neu-
ronal activity in the brain; its onset can involve several regions (generalized
seizures) or just a circumscribed brain region (focal seizures) [1]. The causes of
epilepsy are multifactorial, among the known causes there are infections, injuries,
abnormal brain development, unbalance in neurotransmitters, brain tumors and
others. Epilepsy treatments include pharmacology or surgical methods but even
with advances in medicine approximately 30% of patients remain with seizures
[2]. If there were a way to estimate internal changes that lead to seizures then
it would be possible to design devices able to deliver drugs or electrical stimu-
lation automatically in real time in order to reduce or abolish such pathological
activity, even more, if one can account with a model that describes the electrical
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2 State and parameter estimation of a neural mass model

activity in a certain region in the brain then a feedback control strategy could
be designed to maintain activity within normal behavior.
Computational modelling in neuroscience is a well-established and increasing re-
search area that has helped to better understand mechanisms underlying certain
brain activity or phenomena. When combined with experimental studies it can
be a powerful tool in brain research, especially in brain disorders [3, 4]. In this
work, we use neural mass modelling [5] combined with in-vivo experiments to
investigate whether a change in the states and parameters of the model can be
observed during the transition to status epilepticus (SE). By using a cubature
Kalman filter (CKF) [6] we are able to jointly estimate states and parameters
changes on-line.
The article is organized as follows: In section II, the experimental methods
carried out for data acquisition are described along with the animal model of
epilepsy used in this study; in section III the electrophyiological signals are an-
alyzed in frequency domain and differences between interictal and ictal signals
are remarked; section IV introduces the neural mass models and in section V a
description of the model used here is given, and then, signals produced by the
model are compared to the real signals. In section VI we present state and param-
eter identification from electrophysiological signals, finally, section VII presents
results and conclusions.

2 Experimental setting

2.1 Pilocarpine model of epilepsy

Pilocarpine is a muscarinic agonist used to reproduce several characteristics
present in human temporal lobe epilepsy. This experimental model was chosen
because the electrophysiological activity of animal models that were adminis-
tered pilocarpine resembles to that in human temporal lobe epilepsy [7].

Male Wistar rats (190-200 g) were maintained individually in a temperature
controlled room (22 2C) on a 12 h light/dark cycle, with ad libitum access
to food and water. All experimental procedures were designed to minimize ani-
mal suffering, and the experimental protocol was in accordance with the Rules
for Research in Health Matters (Mexican Official Norms NOM-062-ZOO-1999,
NOM-033-ZOO-1995) and it was approved by the local Animal Care Committee.

To induce acute SE, rats were anesthetized with isofluorane (Sofloran, PISA,
Laboratories, Mexico) in 100% oxygen and they were then secured in a Stoelt-
ing stereotaxic frame with the incisor bar positioned at -3.3 mm. A hole was
drilled in the rats skull, above the right lateral brain ventricle at the following
stereotaxic coordinates relative to bregma: AP -4.1 mm, L -5.2 mm, V 7 mm.
A single dose of pilocarpine hydrochloride (2.4 mg in a total volume of 2 µl;
Sigma-Aldrich, USA) was injected using an injection pump that was attached
to the stereotaxic frame (flow 1 µl/min; Stoelting Co. IL. USA), after which the
animals were returned to their cages for observation and scored according to the
Racine scale [8]. Animals with a score of 4/5 were considered to have developed
SE. After 90-120 minutes, SE was abolished by injecting diazepam (5-10 mg/kg,

Proceedings IWBBIO 2014.  Granada 7-9 April, 2014 1730



State and parameter estimation of a neural mass model 3

i.p.) in order to prevent the animals death and when necessary, a second dose of
diazepam was administered.
The electrophysiological data obtained in two animals was used in the present
study. These animals were anaesthetized with isoflurane in 100% oxygen and po-
sitioned in a stereotaxic frame such that lambda and bregma were in the same
horizontal plane. Fixed recording microelectrodes, four pairs of tungsten wires
(60 µm in diameter) with a vertical tip separation of 1.5 mm, were implanted bi-
laterally at symmetrical locations in the posterior hippocampus (CA1, AP, -5.0
mm relative to bregma; ML, 5.0 mm; DV, -5.5 mm) and anterior hippocampus
(Dentate Gyrus DG, AP, -3.5 mm; ML 2.00 mm; DV -4.0 mm). The microelec-
trodes were attached to a pin connector and fastened to the skull with dental
cement. After a week of recovery, the rats were allowed to move freely and their
behavior was recorded. Five 4-channel MOSFET small amplifiers were placed on
the cable connector to eliminate movement artifacts, and the electrical activity
in the hippocampus was recorded using a 7D polygraph with eight amplifiers
(Grass Technologies, RI, USA) and a wide-band (0.1-3 kHz). The sensitivity
was 75 µV/cm per channel and a 5 kHz/channel sampling rate was used with 12
bit precision. Experiments were performed using an iMac A1048 (Apple, USA)
and MP150 software (BIOPAC Systems, CA, USA). Matlab (MathWorks) rou-
tines were used to analyze the signals [9]. Every electrode signal accounts for
the electrical activity of a population of neurons in a vicinity of the implanted
microelectrode.

3 Signal Analysis

The complete recording of a representative experiment is showed in Figure 1.
There are four signals, from top to bottom: right DG, right CA1, left DG and
left CA1.

It is defined status epilepticus as self-sustained seizure activity. There are
two important things to notice in Figure 1; the first one is that SE begins in the
right hemisphere a few minutes after administration of pilocarpine in both DG
and CA1, nevertheless in the left hemisphere SE starts almost an hour later,
this is because injection was administrated on the right lateral ventricle (see
Experimental setting). The second issue is that SE ceases in the four channels
approximately in the time 10000 seconds .

A frequency analysis of the signal was carried out, Fourier transform was
applied to selected segments of the signal to obtain their main frequency compo-
nents in order to get information for the design of the model. The main frequency
components in three different segments of the recording, corresponding to basal
activity, and SE activity is shown in Figure 3.
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Fig. 1. Complete recording of the experiment, from top to bottom are shown the right
Dentate Gyrus, right CA1, left Dentate gyrus and left CA1. The Figure shows four
vertical lines, from left to right, the first (red) indicate the time when pilocarpine was
administrated, the second line (black dashed) indicate the time of status epilepticus
onset in the right hemisphere, the third line (black dashed) show the time of status
epilepticus onset in the left hemisphere, the fourth vertical line show the moment of
SE cessation
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Fig. 2. Three representative types of activity (left) and their respective frequency spec-
trum (right) are shown. The upper sub-plot shows basal activity before pilocarpine
injection and the other two sub-plots show different types of activity during status
epilepticus.
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4 Neural Mass Models

The present study propose to model real data obtained from intracranial EEG
recordings of experimental rats by using the neural mass model methodology
[10–12]. This methodology (also known as population model) allows to represent
local field potentials (LFP) as the result of the interaction among populations of
neurons, where some populations are formed by purely excitatory neurons and
other populations are formed by purely inhibitory neurons. Then, it is combined
the neural mass models with the CKF [6] to estimate in real time the states and
parameters of the model with the real data. We assume that certain parameters
of the model are time-varying and that is the variation of these parameters that
eventually lead to epileptiform discharges. Recent studies have analyzed how
certain parameter variation affects the model behavior, some of these studies
have been carried out from a theoretical approach in the frame of bifurcation of
dynamical systems. On other studies, more detailed models have been used and
compared to real data with good results, nevertheless, estimation of parameters is
done off-line with genetic algorithms. In [13] authors use a Bayesian approach and
dynamic causal modelling to estimate effective connectivity among populations
using FMRI time series, in [14] the CKF is utilized to estimate states of an FMRI
model.

Neural mass models represent field potentials on a local area of the brain,
in our case in an area adjacent to the implanted microelectrodes. It is assumed
that the produced signal is the result of interacting neural populations, in spe-
cific excitatory and inhibitory populations [5]. The model can be visualized as
formed by three principal components, the external input which represents ac-
tivity coming from other areas (populations) of the brain, this input is usually
represented by random noise. The second component is the populations of neu-
rons presented in that particular area whose average membrane potentials are
modeled by differential equations as a function of the population firing rates.
The third component is the output of the model which is a combination of the
states of the model. In Figure 4 a generic scheme of a neural mass model is
shown, p(t) is the external input, the main excitatory population is delimited by
a dashed oval, the inhibitory population is depicted at the bottom delimited by
a dashed rectangle, and a secondary excitatory population appears at the top
of the figure. Each rectangular block with the text h(t) accounts for an impulse
response block whose inputs are firing rates and its output is a postsynaptic
potential (similar as dendrites that receive excitatory or inhibitory synapses and
transform them in postsynaptic membrane potentials). These blocks carry out
a convolution between the incoming action potential sequence, i.e. firing density
[15] and synaptic impulse response function, the result are postsynaptic poten-
tials that are summed linearly. The blocks that have a sigmoid figure inside,
convert the postsynaptic potential values to a pulse density i.e the firing rate of
the population, through a nonlinear sigmoid function [16, 17].
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6 State and parameter estimation of a neural mass model

Fig. 3. Schematic representation of a general population model schematic, rectangles
with the letter hx represent the conversion from pulse density to postsynaptic potentials
and rectangles with a sigmoid figure inside represent the nonlinear conversion from
postsynaptic potentials to pulse density. PSP is postsynaptic potentials, FR is firing
rate.

The synaptic impulse response can be represented by a second order differ-
ential equation as

ẏ = z

ż = Aax(t) + 2az(t) + a2y(t)
(1)

where x(t) is the input, y(t) is the output and parameters A, a shape the synap-
tic response, they have different values for each neurotransmitter, i.e GABA,
AMPA.
The sigmoidal function that transforms postsynaptic potential in firing rate is
described by the equation

Sigm(yx) =
2e0

1 + er(v−v0)
(2)

where, e0 represents the maximum firing rate, v0 the PSP for which a 50% firing
rate is achieved, and r the steepness of the sigmoidal transformation.

5 Dentate Gyrus

The DG is a cortical region that is part of a larger functional brain system called
the hippocampal formation. It lies between the entorhinal cortex and the Cornu
Ammonis area and it is thought to play an important role in preprocessing
information coming from cortical areas that ultimately leads to the production
of episodic memories [18]. The dentate area possess two principal excitatory
cells, the dentate granule cells and the mossy cells; and at least eight types of
inhibitory interneurons [19]. In the present study, it was modeled the DG as
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formed by four subpopulation of neurons, the granule cells (GC) and mossy
cells (MC) (both excitatory) and the pyramidal basket cells (BC) and hilar cells
(HC) (both excitatory). A schematic representation is shown in figure 5, as can
be observed, the inhibitory population have feedback loops which is consistent
with morphological studies and this recurrent inhibitory connexion allows the
model to have oscillations in the gamma band (30-70 Hz). MC connects to GC
and vice-versa, BC connects principally to GC and HC connects mainly to GC
and BC. The equations that describe the dynamics of the model are a modified
version of Wendling and coworkers model [10] and are given by:

Fig. 4. Schematic draw of the dentate gyrus connection. Continuous arrows represent
excitatory connections and dashed arrows represent inhibitory connections, rectangles
represent population of specific types of neurons, the external input represents afferent
activity from the entorhinal cortex. MC is mossy cells, GC is granule cells, BC is
pyramidal basket cells and HC is hilar cells

v̇gc = igc

i̇gc = Aa(Sigm(vmc − (C4vbc + C6vhc)))− 2aigc − a2vgc
v̇mc = imc

i̇mc = Aa(p(t) + C2Sigm(C1vgc))− 2aimc − a2vmc

v̇bc = ibc

i̇bc = Bb(Sigm(C3vgc)− C8vhc)− 2bibc − b2vbc
v̇hc = ihc

i̇hc = Gg(Sigm(C5vgc − C7bc))− 2bihc − b2vhc

(3)

The states vx are the postsynaptic potentials of the population indicated by
the suffix, i.e. vgc is the postsynaptic membrane potential of the granule cell
population, the parameters A,B,G are the excitatory and inhibitory gain re-
spectively, a, b, g are the lumped representation of the sum of the reciprocal of
the time constant of passive membrane and all other spatially distributed delays
in the dendritic network, p(t) is the input to the system and represents incom-
ing activity from external populations activity . The parameters C1, C2, ..., C8
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8 State and parameter estimation of a neural mass model

represent the average number of synapses from one population to other popula-
tion. To be consistent with structure of DG, relations among synapses from one
population to another were averaged from results reported in literature [19].

Figure 6 shows different types of activity that the model is able to reproduce
and their respective frequency spectrum.

0 1 2 3 10 20 30 40 50 60

0 1 2 3 10 20 30 40 50 60

0 1 2 3
Time (s)

0 10 20 30 40 50 60
Frequency (Hz)

Fig. 5. three segments of simulated signals (left) and their respective frequency spec-
trum (right). Compare to Figure 3

For the CA1 area it was taken the model proposed by Wendling [10].

6 States and parameter estimation

Biological systems have the property of internal self-regulated environment and
keep it stable. This property is called homeostasis, and it has been shown to play
a central role in the regulation of normal activity within the brain [21]. In this
article it was assumed that relations among internal parameters keep out the
brain from experiencing and spreading seizures, but when there is a pathological
condition, homeostasis fails and these relations are no longer sustained; accord-
ingly, it is hypothesized that when estimating key parameters in the model from
a real pathological signal, parameter relations should change during an ictal
event. We particularly focus on three parameters, the relation on the excitation
and inhibition gains [22] and the parameter K, the strength connection from
a population in one area to a population in other area, i.e. from right DG to
right CA1, or, from right DG to left DG. In this article estimation of states
and parameters of the model was carried out with the CKF which performs effi-
cient joint state and parameter estimation [23] and it is specially well suited for
nonlinear systems [24]. Briefly, the CKF is a Bayesian, recursive predict-update
process. This recursion allows for on-line estimation. In the Bayesian nonlinear
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filtering paradigm it is necessary to solve integrals of the form nonlinear func-
tion X Gaussian density which are usually intractable, the CKF overcomes this
issue by evaluating integrals numerically using cubature rules [6]. For a detailed
explanation of the method see [14]. In general a nonlinear system can be put in
terms of process and measurement equations as:

xk = f(xk−1) + vk−1

yk = h(xk) + wk

(4)

where xk ∈ Rn is the state of the system at time k, y is the measurement of
the system or observed variable, vk, wk are zero-mean Gaussian noise and f :
is a nonlinear function. The task of estimating the states of a nonlinear system
consist thus in estimating xk from only the measurement i.e. this work from the
measurement are the signals from the implanted microelectrodes. Additionally
to the states it is also required to estimate the parameters and the input of the
system, then the parameters and input can be concatenated with the states of
the system and take them as other states which evolution is described in the
following way  xk

pk
uk

 =

 f(xk−1) + vk−1

pk−1 + ξk−1

uk−1 + γk−1


yk = h(xk) + ωk

(5)

here, p is the parameter vector and u represents the input to the system. This
method is known as joint state and parameter estimation. Since epilepsy is be-
lieved to be the result of imbalance between excitation and inhibition [25], in
this work we choose to track the changes in the ratio between parameters A,
B and G that can be thought as the amount of excitation and inhibition, re-
spectively. In several studies it has been shown that an increase in excitatory
postsynaptic currents (EPSC) occur in pilocarpine treated rats [26]; probably
because of synaptic reorganization, axon sprouting and loss of specific types of
interneurons, besides, in [27] it was demonstrated that extracellular changes in
glutamate and GABA occur during seizures; therefore, it is reasonable to expect
a change in the parameters during SE.
In this work three different experiments were carried out: in the first one, sig-
nals were generated artificially with the present model and parameters were
varied during simulation; the task in experiment 1 consisted on identifying cor-
rectly the parameters and the states of the model by using the CKF and with
only the measured variable of the model and no other information. The second
experiment consisted on estimating states and parameters from real signals of
intracranial microelectrodes recordings (see experimental setting section) and to
analyze whether a change occur in the parameters during status status epilepti-
cus and drug injection. The third experiment consisted on identifying strength
coupling variation among populations in different microelectrode locations; es-
pecial emphasis was put on populations from opposite hemispheres.
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10 State and parameter estimation of a neural mass model

7 Results

Next, the results from the three experiments carried out in this work are shown.

7.1 Experiment 1

In this section parameter A was varied during the simulation. The variation in
this experiment is not intended to have a biological meaning but to observe the
performance of the method and the behavior of the model to variations of the
parameter A. In Figure 7 it is shown estimation of the output and state vgc.
It is important to notice the variation of the parameter, from time 0–20 s the
parameter was varied in a sinusoid like manner, after that abrupt changes in
the parameter were induced. As can be observed from Figure 8, the estimator
is capable of tracking this time varying parameters. It is equally important to
remark that the system undergoes a bifurcation during this parameter variation
which resembles a transition from interictal to ictal state.
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Fig. 6. Simulated and estimated signals

7.2 Experiment 2

In this experiment, the states and parameters of the neural mass model are esti-
mated from real electrophysiological signals from microelectrodes implanted in
experimental animals with temporal lobe epilepsy induced by pilocarpine. The
goal was to analyze changes in the parameter during transition from interictal to
ictal activity presented in SE as well as analyze changes in the parameters as a
result of the transition from ictal to interictal acticity. Figure 8 shows the evolu-
tion of the estimated parameters during all the experiment. As can be observed
from the signal, parameter A (excitation gain) presented low variation before
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pilocarpine injection, after pilocarpine at time 1300 s, parameter A presented
greater variations, the higher value reached by parameter A is during SE. It is
interesting to observe that at time 8000 seconds parameter A reaches its lowest
value, just before SE finished. In the bottom sub-plot (Figure 9), parameters B
(blue) and G (red) are shown. As it can be observed, the value of parameter B
augmented during SE, perhaps in an attempt to regulate activity and parameter
G increased after pilocarpine injection, perhaps this reflects the fact that during
the time from 2500 to 5000 seconds there was no seizure activity even when
pilocarpine was already administrated, considering homeostasis phenomena.
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Fig. 8. Results from experiment 2. Parameters A, B and G are simultaneously esti-
mated from a real signal. In the upper sub-plot parameter A is shown in red while
the signal from the microelectrode is shown in black, scale from the real signal was
modified for comparison. In the lower sub-plot parameter B (blue) and G (red) are
shown
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7.3 Experiment 3

Another characteristic of epilepsy is that populations of neurons can synchronize
even over long distances or separate hemispheres, it has been reported that a
possible mechanism for such synchronization is the strengthened coupling be-
tween neurons in distant populations; in this work it was analyzed changes in
a coupling parameter between populations when signals were taken from two
different microelectrodes. For this experiment two populations were modeled as
coupled by a parameter K [28]. Figure 10 shows parameter K from right DG to
left DG. In this case the coupling is modeled with a delay as in . Coupling be-
tween two populations increased during propagation of seizure activity to the left
hemisphere even when in the right hemisphere, seizure activity started earlier.
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Fig. 9. Result from experiment 3. The middle sub-plot shows the estimated param-
eter K, the upper and lower sub-plots shows the signal from right DG and left DG
respectively

8 Conclusion

Estimation of the states and parameters of a neural mass model simulated and
during real intracranial EEG recordings obtained during SE induced by pilo-
carpine was carried out in this work. This estimation is based on the cubature
Kalman filter which is specially well suited for nonlinear systems. Both, syn-
thetic and real data was utilized in the experiments. It is worth to notice that
this method can be implemented in real time, this is particularly important for
the design of stimulation devices that attempt to stop seizures. The use of a
neural mass model could allow for designing feedback control strategies that
can deliver electrical stimulation or anti-epileptic drugs on an optimal way [29].
When estimating the parameters of the model related to excitation it was ob-
served that during basal activity (before pilocarpine) the parameters did not
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varied too much and stayed around certain value, while during ictal activity,
the parameters presented a larger variation and oscillatory type behavior, as
expected excitation gain increased during seizure activity.
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