
 

Impact of missing genotype imputation on the power of 

Genome Wide Association Studies 

Łukasz Król1, Ghazi Alsbeih2, Christophe Badie3, Joanna Polańska1 

1 Data Mining Group, Faculty of Automatic Control, Electronics and Computer Science, Silesi-
an University of Technology, Akademicka 16, 44-100 Gliwice, Poland 

{lukasz.krol,joanna.polanska}@polsl.pl 
2 Head, Radiation Biology Section, Biomedical Physics Department, King Faisal Specialist 

Hospital & Research Centre (KFSH&RC), P.O. Box 3354, MBC-03, Riyadh 11211, Kingdom 
of Saudi Arabia 

galsbeih@kfshrc.edu.sa 
3Public Health England, OX11 ORQ Chilton, Didcot, UK. 

christophe.badie@phe.gov.uk 

Abstract. Genome Wide Association Studies are often performed on datasets 
containing a relatively small number of genotypes. In those cases, statistical 
tests performed on subgroups of those genotypes lack power or may even not 
fulfill the requirements of minimal number of observations. In this work we 
present results of running a GWAS analysis including parametric and nonpara-
metric analysis of variance for different stress markers and models, validation 
by a group of related patients and clustering of results by their chromosomal 
positions. We show that the selection of imputation method has a significant 
impact at each phase of the analysis, and that it is worth to use the best method 
available. 
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1 Introduction  

When working with genotype data, one often faces the problem of missing values for 
certain loci of certain individuals. This can be an issue especially in case of microar-
ray experiments, when we analyze hundreds of thousands of SNPs, but each SNP is 
observed in a limited number of patients. The limiting factor may be the cost of a 
microarray chip, or in some cases, like when measuring the effects of irradiation – 
problems with finding the group of interest. Depending on the type of analysis per-
formed, different steps may be used to handle this issue. The simplest option is to 
simply skip the missing values. The obvious flaw of this approach is that it limits the 
power of the experiment – both in terms of its power to find true discoveries and re-
ject false discoveries. Certain types of analysis, like multidimensional analysis where 
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we are interested in analyzing multiple features at once may be impossible to perform 
without fixing the missing signals. 

There are many approaches to the problem of imputation. In general, one can either 
employ universal machine learning methods, or deploy algorithms dedicated to ge-
nomic data. A good overview of imputation approaches and their performance are 
presented in [1] and [2]. These domain-specific methods take into consideration the 
mechanisms behind the process that created the data, so they have a chance of yield-
ing better results. The choice does not depend solely on a method’s accuracy. Other 
factors of importance are time needed to perform the imputation, the availability of 
tools or the researcher’s programming skills. Depending on the technologies used and 
the format of the dataset, implementing the required solution may be quite time con-
suming, both in terms of time needed for deployment, and the computation itself. The 
person analyzing the results may ask herself a question, whether the benefits of im-
puting the missing data are worth the extra effort. 

Our work was aimed at answering this question by performing parallel analysis of 
genomic dataset imputed using various approaches. Besides capturing their raw impu-
tation accuracy, we examined its impact on the output of the analysis procedure. 

2 Materials 

In the analysis we made use of two data sources. The primary one were genetic poly-
morphisms of  130 Caucasian individuals sampled at 565975 loci across 22 pairs of 
autosomal chromosomes using Affymetrix Axiom GW Hu SNP  microarrays. Loci 
from sex chromosomes, as well as mitochondrial DNA polymorphisms were included 
in the datasets as well. In case of females, their Y polymorphisms were obviously 
marked as missing (and not imputed). In case of males, their X and Y mutations were 
marked as bi-allelic, although only one allele was present. This underlines the fact, 
that a mutation on the “one and only” allele works similar as a mutation on both al-
leles. 

Table 1. The number of SNPs for each „logical“ chromosome is presented along with the per-
cent of missing signals and the average distance between subsequent SNPs. The average is 

calculated after rejecting the upper and lower half percentile of distances 

 
 

The second data source are gene expression levels for two genes – Ferredoxin Reduc-
tase [3] and Cycline G [4]. The levels for each marker were measured before and after 
exposure to radiation.  

chromosome: 1 2 3 4 5 6 7 8 9 10 11 12

missing signal ratio: 0,58% 0,60% 0,60% 0,61% 0,60% 0,60% 0,63% 0,61% 0,60% 0,61% 0,60% 0,60%

number of SNPs: 41578 45146 39789 37066 35568 43047 30657 31632 26197 27746 25802 27241

average distance: 5976 5382,2 4970,2 5149,6 5079,3 3966,4 5189,2 4618,9 5377,8 4878,1 5221,5 4904

13 14 15 16 17 18 19 20 21 22 X Y MT

0,60% 0,68% 0,59% 0,67% 0,65% 0,59% 0,86% 0,65% 0,61% 0,65% 0,55% 0,34% 0,66%

22343 18290 17016 16364 11636 17731 6890 13285 7894 5515 15291 1995 256

4291,9 4759,8 4832,5 5498,3 6956,7 4392,9 8540,4 4731,2 4716 6205,1 9951,6 28266 62,9
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Each individual was accompanied by information about his phenotype, and his lev-
el of relatedness with other individuals. In general, three groups of relatedness exist in 
the data. 44 unrelated individuals serve as a basic investigation group. The dizygotic 
group of 56 siblings was as a validation group. These individuals are genetically dif-
ferent, but were assumedly raised in the same conditions.  

The third group – homozygotic twins – was left for further studies. 

3 Methods 

3.1 Data preparation 

Before the imputation and analysis steps could be implemented, some additional steps 
like data integration and cleaning had to be performed in order to create a consistent 
dataset to be used through this and following analyzes. The original data contained 
chromosomal positions of the polymorphism that were consistent with the positions 
from the hg18 [5] assembly. We updated those positions with those from the hg19 [5] 
assembly in hope that the more precise positions would slightly enhance the imputa-
tion accuracy. 

3.2 Imputation techniques 

Population mode.  

This is a simple and straightforward method. Each polymorphism is imputed indi-
vidually by selecting the value which is most common amongst the population. The 
fact that a big part of population usually shares the same haplotype block [6] makes 
its accuracy higher than in case of random signal distribution. 

Although primitive, this method may be useful for creating a reference baseline for 
measuring the performance of other, more advanced methods. 

Weighted Nearest Neighbor.  

The Weighted Nearest Neighbor algorithm [2], inspired by the universal k-nearest 
neighbor algorithm may be viewed as a local and direct alternative to more advanced 
and time consuming but precise fastPHASE [7]. It is local in the sense that it includes 
only a limited neighborhood of the loci being imputed, and direct in the sense that it 
imputes the genetic signals without inferring the underlying haplotype phases. 

The SNPs are imputed using orthogonal coding, that is no-mutation, one-mutation 
and two-mutation homozygotes are encoded as (001), (010) and (100) respectively. 
The missing signals are encodes as (000). As in case of any “neighborlike” classifier, 
a proximity measure between observations must be defined. The observation itself is a 
vector of 3 x w binary numbers, where w is the width of the neighborhood included in 
the experiment. With adopting the Hamming Distance [8] – the number of differences 
between binary vectors - in the proximity measure, we obtain the same distances for 
all three possible signal values. 
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The most interesting feature of this algorithm is that the neighboring loci’s influ-
ence on the proximity measure declines with its distance from the loci being imputed. 
This reflects the fact that SNPs that are close to each other are likely to be inherited 
together and come from the same haplotype block, so the vector around the SNP of 
interest may form a pattern that will be found in other individuals. 

In [2], special steps are performed in case of equal values of the proximity measure 
for two or more neighbors. These include recruiting additional observations to the 
voting pool, and ultimately extending the window. We use a simplified approach, and 
draw a sample of one neighbor from the nearest ones. 

fastPHASE 

fastPHASE is the imputation method introduced in [7]. It models the patients hap-
lotypes as a mosaic of haplotype blocks common through the population. Further-
more, block membership of the alleles is assumed to change following a Hidden Mar-
kov Model [9]. The parameters of the whole model are fitted using the EM algorithm 
[10]. 

3.3 Measuring imputation performance 

In order to measure the overall imputation performance, we created a test dataset from 
the main analysis group by removing any loci containing missing values. Then, for a 
given imputation algorithm and missing signal ratio, we marked random loci of ran-
dom individuals as missing. Comparing the original values with those imputed al-
lowed us to observe, besides the overall crude accuracy, individual accuracies for 
three possible values of input signals, with respect to the kind of error made by the 
imputation algorithm. 

3.4 Analysis 

In our analysis we were interested in picking up polymorphisms responsible for varia-
tions in levels of expression of the FDXR and CYCG1 stress markers. This scenario 
suits the ANOVA statistical procedure, with the values of polymorphisms being our 
independent variable, and the gene expression levels being our dependent variable.  
The statistical procedure was performed twice – once for the pre-irradiation expres-
sion levels, and once for the irradiated samples. We were interested in polymor-
phisms, for which significant differences in expression levels are observed for groups 
of genomic signals after irradiation, while the null hypothesis remains not rejected for 
original expression levels. This accounts for situation, where the level of organism’s 
reaction to stress marker is a direct result of its genotype.  

We have modeled the effects of differences at the levels of single alleles in three 
ways. In the dominant model, we assumed that the organism’s reaction is triggered by 
mutation of one allele, so the heterozygotes and dominant homozygotes were grouped 
together. In the recessive model, when two mutations are required for the effect to 
take place, the heterozygotes were combined with recessive homozygotes. In the third 
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approach, we tried to model a situation where the effect is visible with one mutation, 
but is still enhanced by the second mutation, so we analyzed the groups separately. 
Each SNP was – if possible – analyzed with all three models. If  multiple models 
passed validation by the related individuals group, that with the lowest p-value was 
chosen as that best describing the underlying mechanism. 

The ANOVA procedure requires fulfillment of requirements of normality and 
equality of variances of the populations from which the groups were drawn. This was 
assessed by testing the groups for differences from normal distribution using the 
Shapiro-Wilk tests. The main reason for choosing it over more robust Anderson-
Darling test was its low minimal sample size requirement. With a small population of 
44 individuals, and given that most of them usually share the same haplotype block, 
testing for the normality of the smallest group would be impossible for most of the 
polymorphisms if using tests with larger minimal sample size requirements. The vali-
dation phase of the analysis should reject most of the false discoveries that arise from 
this simplification of the assumptions verification. The other assumption – the as-
sumption of group variance equality – was verified using Bartlett test [11]. 

The method of handling a SNP for certain model (dominant, recessive, cumula-
tive), marker (FDXR, CYCG1) and time (pre and post irradiation) depended on the 
level of fulfillment of ANOVA assumptions. If any of the tests could not be per-
formed, the SNP was dropped from analysis. If all the assumptions were met, stand-
ard ANOVA was performed. In case of any problems with normality of the groups, 
Kruskal-Wallis rank test [12] was being performed instead of ANOVA. In case of 
issues with equal variances of the groups, Welsch t-test [13] was performed on 2-
group models, and Kruskal-Wallis test in case of the cumulative model. If the level of 
fulfillment was different for the pre and post irradiation expression levels, then the 
most robust method was chosen to analyze both sets. 

A unique feature of our analysis pipeline is the validation step where we used the 
group of related individuals to reject potential false discoveries. We deployed two 
validation conditions – one aimed at testing for the presence of acquired, not genet-
ically-dependent reactions to irradiation,  and one condition aimed at detecting the 
effects of experiment conditions. The first condition was implemented by arranging 
the pairs of related validation individuals so that they would represent different 
groups of the model currently being validated. If the model is valid, and the previous-
ly observed values of gene expressions were purely result of genetic differences, then 
we should observe significant differences of gene expressions as well. However, if the 
previously observed differences were results of acquired features, then the expression 
levels should be pulled together as the siblings have assumedly acquired the same 
features. In the second validation condition, we tested for effects of experiment condi-
tions. In this case, we were operating on individuals sharing the same model state. If 
the observed levels of expressions in the groups were different, then the SNP was 
rejected. 
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3.5 Filtering out the most interesting results 

All the SNPs picked up at the preceding phase are considered valid results that can be 
further investigated manually. However, it is worth to check those that are most prom-
ising first. A cluster of validated loci with low chromosomal distance may be the loca-
tion worth investigating. 

Our method of clustering is based on the r-scan statistics introduced by Karlin and 
Macken in [14]. Those statistics provide the  information how unlikely would it be for 
a k-th smallest (or largest) distance to exist, if a larger distance was divided into n 
sub-distances at random (the null hypothesis). Using these statistics, a top-down or 
bottom-up clustering algorithm can be implemented. In the top-down approach, the 
set of SNPs is recursively divided into clusters, as long as the largest distance is too 
large to appear by chance alone. In the bottom-up approach,  loci are grouped together 
as long as their distance – the outer linkage distance between the closest loci of two 
clusters – is too small to appear by chance. We decided to use the second approach, as 
we are interested in detecting clumping rather than overdispersion. The algorithm 
stops when the distances become likely to occur by chance, so no further analysis of 
the dendrogram is needed. 

3.6 Capturing imputation’s impact 

In order to capture imputation’s impact on the obtained results, the number of SNPs 
that passed each step of the data analysis pipeline for each gene-model-imputation 
algorithm is examined. Besides capturing the difference in total number of loci, two 
set differences between the unimputed and imputed are calculated in order to capture 
shifts in SNPs between analysis methods used. 
To verify imputation’s effect on p-values obtained for specific loci, paired Wilcoxon 
ranked tests [15] were performed for the p-values of loci validated for both methods 
to verify if the latter are lower. 
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4 Results 

4.1 Simulated imputation accuracies 

 

Fig. 1. The total imputation accuracies (the fraction of simulated missing signals imputed cor-
rectly) for the methods employed.  

 

Fig. 2. Separate error rates for heterozygous and homozygous signals.  

The results are consistent with those presented in [2]. The primitive method of replac-
ing missing values with population mode has achieved worst results, although better 
than could be expected if the underlying genotypes were evenly distributed in the 
population. It’s performance is not influenced by the number of missing signals – this 
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is because sampling does not change the underlying distributions. fastPHASE has 
obviously achieved highest results, while Weighted Nearest Neighbor is much faster 
at the price of imputation accuracy. Also, its performance seems to be the one most 
influenced by missing signal ratio. 

4.2 Impact of imputation on analysis results 

Table 2. Differences in the number of SNPs at different stages of the analysis expressed in 
terms of set differences. Values for the unimputed dataset are absolute, while others represent 

difference in regards to them.  
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Table 3. illustrates an obvious flaw of the primitive method of subsetting the miss-
ing signal with population mode – it never yields the least represented signal, so it 
doesn’t increase the amount of loci that can be analyzed for a specific model. Howev-
er, it affects the fulfillment of ANOVA assumptions as there are shifts between para-
metric and nonparametric branches of the analysis pipeline. Weighted Nearest Neigh-
bor and fastPHASE have – on the contrary – allowed several hundred more SNPs to 
be analyzed. 

 
Fig. 3. A comparison of Cycline G1 p-values obtained for analogous loci of the original dataset 

and a dataset imputed by the primitive method of population mode, the Weighted Nearest 
Neighbor and fastPHASE. Above each scenario, the paired Wilcoxon test probability for the 
second group of p-values being lower under the null hypothesis is presented, along with the 

average difference in p-values. The X mark represents geometric center of the pairs of p-values. 
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Fig. 4. An analogous to Fig. 4 plot for Ferredoxin Reductase. 

For all genes and imputation algorithms, the loci p-values observed for the imputed 
dataset are lower than those for the unimputed one. In case of Cycline G1 the differ-
ences for fastPHASE are the biggest and most significant, with the method of subset-
ting with row mode being the opposite. In case of Ferredoxin Reductase the differ-
ences are not as clear however. 
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4.3 r-scan clustering 

Table 3. The differences between the number of clusters of specific sizes obtained for different 
imputation techniques using r-scan clustering. The   values obtained for the unimputed dataset 
are expressed as absolute values, while the others are relative to them. The cluster size of 1 
represents unclustered SNPs. 

 

Table 4. A comparison of the number of clustered SNPs in the unimputed and imputed da-
tasets. The values being presented are the numbers of actual SNPs being removed or intro-
duced. 

 
 

Table 4. shows that imputing less than a percent of missing values has increased 
the clumping of results – the number of results participating in a cluster – by a magni-
tude of several percent.  

5 Conclusion 

Even with a ratio of missing values below one percent, introduction of imputation 
causes shifts in the data analysis pipeline – it increases the number of SNPs valid for 
analysis, influences results of statistical procedures and may change patterns of chro-
mosomal positions of the result locations. Multidimensional analysis of polymor-
phisms could even be impossible to perform without it. For these reasons, when it is 
employed, it should be done the best way possible. The easiest method of replacing a 
missing value with population mode for a specific SNP has many flaws, the most 
significant one being discrimination of the least represented signal, which is a key to 
increasing power of the experiment. An obvious solution is a mature imputation algo-
rithm like fastPHASE. 

There are two apparent advantages of the substitution by population mode – facili-
ty of deployment and low processing time. The latter is rivalled by Weighted Nearest 
Neighbor, while the first one could be overcome with deployment of on-line applica-
tions that would allow researchers to benefit from its high speed and accuracy without 
carrying the burden of implementing it by themselves. This, combined with its devel-
opment potential like employment of dynamic weighting functions reflecting local 
characteristics of the chromosome makes it a method worth of further investigation. 
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