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Abstract. The phonocardiograms (PCGs), recording of heart sounds,
have many advantages over traditional auscultation in that they may
be replayed and analyzed for spectral and frequency information. PCG
is not a widely used diagnostic tool as it could be. One of the major
problems with PCG is noise corruption. Many sources of noise may pol-
lute a PCG signal including lung and breath sounds, environmental noise
and blood flow noises which are known as murmurs. Murmurs contain
many information on heart hemodynamic which can be used particu-
larly in detecting heart valve diseases. Therefore such diseases can be
automatically diagnosed using Murmurs. However, the first step before
developing any automated system using Murmurs is the denoising and
the segmentation of the PCG signal from which murmurs can be sep-
arated. Different algorithms have been developed in the literature for
denoising and segmenting the PCG signal. A robust segmentation algo-
rithm must have a robust denoising technique. The wavelet transform
(WT) is among the ones which exhibits very high satisfactory results in
such situations. However, the selection of level of decomposition and the
mother wavelet are the major challenges. This paper proposes a novel
approach for automatic wavelet selection for heart sounds denoising. The
obtained results on real PCG signal embedded in different white noise
intensity showed that the proposed approach can successfully and con-
sistently extract the main PCG sound components (sound component
S1 and sound component S2) from various types of murmurs with good
precision.

Keywords: phonocardiogram, wavelet selection, denoising, decomposi-
tion level

1 Introduction
Generally, cardiologists do not consider the diagnostic by stethoscope as a princi-

pal tool to take a final decision about cardiac pathologies considering the lim-
itations of human ear in diagnosing heart defects particularly in sound levels
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lower than the audibility threshold. To deal with this problem, new tool (digital
stethoscope) has been developed. This has the capacity to record and replay the
heart beat sound recordings covering all the frequencies issued from the heart
activities. These recording are known as phonocardiograms (PCGs). Since, the
PCG became a particularly useful diagnostic tool because it can show timings
and relative intensities of heartbeat sounds in graphical recordings, also it may
reveal information that the human ear cannot [1-2]. The PCG signal consists of
four heart sound components, these are S1, S2, S3 and S4. The main components
of heart sound are first heart sound (S1) and second heart sound (S2). S1 occurs
during ventricular systole and it contributes to the lub of the lubdub charac-
teristic that can be heard from each heartbeat. It is produced by the closure of
atrio-ventricular valves (mitral and tricuspid). Meanwhile, S2 occurs during ven-
tricular diastole and it contributes to the dub. It is caused by the closure of the
sigmoid valves (aortic and pulmonary). A third and a fourth sound (S3 and S4)
may also exist. S3 occurs just after S2 and has relatively lower energy. S4 occurs
just before the S1 and has lower amplitude com-pared to the others heart sounds
[3-4]. However, a variety of heart murmurs can be also present. The presence of
murmur in PCG signal is often related to heart valve disease. The production
of murmurs results from turbulent flow across valves. Three main factors have
been attributed to cause a murmur: (1) high flow rate through normal or abnor-
mal orifices, (2) forward flow through a con-stricted or irregular orifice or into
a dilated vessel or chamber, and (3) backward or regurgi-tant flow through an
incompetent valve. The evaluation of murmur is based mainly on respectively its
timing, its shape, its location, its intensity, and its duration in the cardiac cycle.
The murmurs can be divided on two categories: systolic and diastolic murmurs.
The systolic murmurs are generated during heart contraction by a stenosis in
aortic valve or regurgitation in mitral valve for left heart, or by a stenosis in
pulmonary valve or regurgita-tion in tricuspid valve in right heart. The dias-
tolic murmurs are generated during heart re-laxation by a stenosis in mitral
valve or regurgitation in aortic valve in left heart, or by a stenosis in tricuspid
valve or regurgitation in pulmonary valve in right heart. For each situa-tion the
murmur takes a particular shape, for example: crescendo-decrescendo shape for
aortic stenosis, decrescendo shape for aortic regurgitation, plat shape for mitral
regurgita-tion or tricuspid regurgitation[5]. The PCG would be a much more
useful diagnostic tool if these murmurs can be extract-ed and processed in or-
der to find different parameters that can be used to identify their causes or to
estimate their severity. However, to extract such parameters it is essential that
the PCG signal has to be segmented into different components, i.e., S1, S2, and
murmur. In the figure 1 below, an example of PCG signals is illustrated.

Many researchers have been carried out in order to develop heart sound seg-
mentation (HSS) algorithms. However, most of these works take the energy of
PCQG signal as the main parameter to segment the different components of heart
sounds. As for example the algo-rithms proposed by H Liang et al [6] and L.
Hamza Cherif et al [7]. They developed a HSS algorithm, which is based on
the normalized average Shannon energy of PCG signal. The algorithms showed
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Fig. 1. Phonocardiogram of three heart sound sequences from: (a) normal heart sounds;
(b) a case of medium aortic stenosis; (c) a case of severe mitral regurgitation. S1 and
S2 represent the first and the second heart sound, respectively, while SM denotes the
systolic murmur in aortic stenosis (b) and in mitral regurgitation (c). Adapted from
[11].

good results particularly in the detection of S1 and S2. However, it was lim-
ited in cases where the heart sound was recorded with serious murmurs. Other
researchers such as Malarvili et al. [8] proposed an approach to segment heart
sound using the instantaneous energy of electrocardiogram (EKG) This tech-
nique showed a good result, however, it is not very appreciated because it needs
two equipments simultane-ously an electronic stethoscope and an electrocardio-
gram. Also, this method fails to per-form properly due to the timing between
electrical and mechanical activities. Other authors such as D.Kumar et al. [9]
used a discrete wavelet transform and simplici-ty in the segmentation of PCG
signal. In this article we can appreciate the powerful of sim-plicity measure-
ment in envelope detection. However, the wavelet decomposition using DB6 as
mother wavelet was unable to delete perfectly the murmurs. Their approach was
not much better in the same difficult heart sound situations. The performance
of this method degrades in severe murmurs. In such situation heart murmurs
overlaps S1 and S2 sounds, leading to difficulty in identifying the boundaries of
the sounds. Recently, A. Gavrovska et al. [10] and C. D. Papadaniil [11] pro-
posed the application of empirical mode decomposition on HSS. This method
seems to be important but it required long computation time. Also,this method
is not tested on real PCG signals with various murmurs. The authors test the
validity of their approach only by adding Gaussian noise with different levels.
By analyzing the abovementioned methods, we can conclude that the HSS al-
gorithms which lead to more successful segmentation results are based on DWT
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or EMD. However, as mentioned above the empirical mode decomposition pro-
cess takes a long computation time compared with decomposition on wavelets
transform. Also, we noticed that the DWT process is not perfectly studied in
HSS. The majority of authors take the parameters found by [12] in the segmen-
tation. However, these parameters are valuable only to remove Gaussian noise.
This paper proposes an automatic scheme for mother wavelet selection in PCG
signal denoising. The wavelets may be used to remove the murmurs and takeout
only the basic sounds S1 and S2. The signal is decomposed by a discrete wavelet
transform, the wavelet coefficients of S1 and S2 tend to be much larger than
those due to murmurs. Thus, coeffi-cients below a certain level are regarded as
noise and thresholded out. The signal is then reconstructed without significant
loss of information. The question that this study attempts to answer is, which
wavelet families, levels of decomposition, and thresholding techniques best re-
move the murmur in a PCG. In the proposed approach, the signal decomposition
is performed at each level with all wavelet functions of a given library, followed
by the calcu-lation of the proposed parameter (EXP). This method tends to
concentrate the information of the main PCG components on the coefficients of
greater relevance, providing a lower distortion of the signal. This part can be an
extension of the work described by S. R. Messer et al. [12]. The paper is struc-
tured in three main sections: first section briefly explains the proposed method,
in the second section achieved results are addressed, and finally in section 3 some
main conclusions are drawn.

2 Methodology

The proposed methodology involves heart sound denoising using wavelet trans-
form. Be-fore the description of the applied method, some generality on wavelet
denoising are summarized in this section.

2.1 Denoising of heart murmurs

As stated above, the proposed method for denoising PCG signals is the DWT.
Matlab routine provides built DWT by decomposing a signal into wavelet co-
efficients and then reconstructs it using the inverse discrete wavelet transform
(IDWT). Many wavelet families are available in the toolbox. However, in the
current study only orthogonal wavelets are examined since they allow perfect
reconstruction of a signal. This operation is carried out by applying a series
of highpass and lowpass filters in succession (quadrature mirror filters) and by
downsampling to keep the original number of data-points. This procedure re-
sults in details, which are low scale, high frequency elements of the signal, and
approximations, which are high scale, low frequency elements of the signal. This
decomposition can be performed for many levels with the decomposition pro-
cess being iterated for successive approximations [13]. In denoising operation all
coeflicients below a certain size are dis-carded with a specific threshold. In fact,
some of the decomposed wavelet coefficients correspond to the main components
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(sound S1 & sound S2) of the PCG signal and others are associated with details
on the original signal (murmurs). If the details are eliminated from signal decom-
position, all characteristics of the main components can be extracted from the
remaining coeflicients since an orthogonal wavelet transform has the property of
energy conservation [14].

2.2 Optimal parameter selection for wavelet denoising of PCG

When using wavelet to denoise PCGs, there are many factors that must be
considered. Examples of such factors are respectively which mother wavelet to
choose, which level of decomposition to fix, and which thresholding methods to
use. In general, the more a wave-let resembles the signal, the better it denoises
the signal. Various families of wavelets are provided in Matlab including the
Morlet, Mexican hat, Meyer, Haar, Daubechies, Symplets, Coiflets and others
[15]. In order to obtain perfect reconstruction after signal decomposition and
a fast algorithm, only orthogonal wavelets will be considered. These wavelets
are the Haar, Daubechies, Coifflets, and Symlets. In Matlab environment, the
Daubechies family of wavelets consists of 45 wavelets, where Haar wavelet is
the first and the most simple in this family. The Symlet family con-sists of 45
wavelets, and the Coiflet family of 5 wavelets. As mentioned previously, the signal
attends a decomposition through quadrature filter banks resulting in approxi-
mations and details for each decomposition level. This process can be performed
for many levels successively for each approximation obtained. To realize denois-
ing operation, some threshold parameters must be chosen. The two common
methods of thresholding a signal are soft and hard thresholding which are used
in Matlab wavelet toolbox. The two methods can be defined as below where T
represents the threshold and x denotes wavelet coefficient[16].
Hard Thresholding:
{x || > T
Tht =

0 |z|<T
Soft Thresholding;:

sing(z)(x —[T|)  |z| =T
Tt =
‘7o lz| < T

Although hard thresholding is a simplest method, soft thresholding can pro-
duce better results than hard thresholding. In fact, the hard thresholding may
cause discontinuities at Ton reason that those values less than the threshold
are set to zero. There are four principal rules to compute threshold T in wavelet
toolbox :Sqtwolog, Rigrsure, Heursure and Minimaxi [16]. The first rule is a fixed
threshold or global thresholding method and it is computed as the square root
of two times the logarithm of the length of the signal. In the second method, the
selection of threshold is based on Steins unbiased estimate of risk (SURE). This
method estimates the risk for a certain threshold value T, and then by minimiz-
ing the risks in T, a selection of the threshold value is obtained. The third rule,
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Heursure, is a combination of first and second methods. If the signal-to-noise
ratio of the signal is very small, then the SURE method estimation will have
more amounts of noises. In this kind of estimation, the fixed form threshold is
selected by means of global thresholding method. The fourth method also uses
a fixed threshold which is chosen to yield minimax performance for mean square
error (MSE). The minimax achieves the minimum of the maximum mean square
error. It is generally used on statistics. These rules are resumed in the next table.

Table 1. Threshold selection rules

Rule name Description

Rigrsure  Selection using the principle of Steins Unbiased Risk Estimate (SURE)

Sqtwlog Fixed form threshold logarithm equal to the square root of two times the logarithm
of the length of the signal

Heursure Selection using a mixture of the first and the second rules

Minimaxi Threshold selection using the minimax principle

In our work, the objective of the denoising process is to suppress the noisy
part in the signal, murmurs, and recover S1 and S2 without noise. There are three
methods available in Matlab wavelet toolbox which are one, sln, and mln define
multiplicative threshold rescaling.The scheme one corresponds to no rescaling.
The option sln performs threshold rescaling using a single estimation of level
noise based on first-level coefficients. The mln method corresponds to the rescal-
ing using level-dependent estimation of the noise at that decomposition level
[16].

2.3 Auto-selection of Mother wavelet

Mother wavelet selection is one of the major tasks in wavelet-based Heart sounds
de-noising. If the selected mother wavelet has high correlation with the real PCG
signals, better denoising performance can be achieved. In the literature, some
authors used fixed mother wavelets such as Daubechies 6, 11 and 20, Coiflet 4 and
5 and the symlet9, 11 and 14 [9,12,17]. However, heart sound signal is stochastic
in nature and change from patient to other according to the pathological case.
In [18], the author proposed to select mother wavelets based on simulative white
noise added to PCG. However, since white noise may not match the real heart
murmur, such approach may exhibit some limitations. On the other hand, other
researches proposed several auto-selection schemes of mother wavelet, theses
algorithms are used in denoising of Partial discharge signals [19-20]. Where, the
highest energy in the approximation coefficientsis chosen as a principal parameter
in the automatic mother wavelet selection[19]. More recently, in [20], the signal
to noise ratio (SNR) is calculated in each level of decomposition, and the highest
value of SNR is taken as reference to indicates the best level of decomposition
with the best wavelet that can be used in the denoising operation.
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In this paper, an automatic mother wavelet selection for heart sounds denois-
ing is proposed. It is based on the determination of a coefficient £ X P determined
by the equation (1) given below.

EXP = cde°" (1)

Where cd; and ca; represents respectively the detail coefficients and the
approximation coeflficients, using a given mother wavelet for decomposition.

It is assumed that the main PCG signal component (S1 and S2) has higher
energy than noises and they are only localized in the approximation coefficients.
The determination of the exponential of these coefficients shows a high difference
between the levels which have higher energy and those of lower energy. Then the
multiplication of this exponential by the detail coefficient is used to increase the
sensitivity in wavelet selection. The resulting coefficient is the £ X P defined in
the equation (1) above. The proposed algorithm is composed on the following
steps:

1. Create a library of wavelet functions ¥ ;) , for each type of wavelet family
type : t=1,2,..,p and selected wavelet orders order: i=1,2,.,N.

2. For each wavelet of the library, perform the decomposition of the PCG signal
in a single level, generating the approximation coefficients ca; and the detail
coefficients cd; .

3. Calculate EX P parameter in each wavelet, and select the one that produces

the lower value as the best wavelet for that decomposition level.

. Repeat steps 2) and 3) until the maximum number of levels is reached.

5. The higher value of EX P found in these levels indicates the most appropriate
wavelet and the most appropriate level for the denoising operation.

W~

The proposed algorithm will be compared with the algorithms described in
[19] and [20]. The evaluation of each algorithm is carried out by calculating the
correlation coefficient corr between the original PCG signal and the denoised
one obtained by the selected mother wavelet in each level. In fact, more the cor-
relation coefficient is near to 1 (corr > 0,90) , better is the denoising operation,
if the coefficient of correlation is less than 0.90 the de-noising is jugged as poor.
The others parameters used in denoising operation such as thresholding rule and
rescaling method are arbitrarily fixed in sqtwolog and one. The maximum num-
ber of decomposition can be fixed using two methods. The first uses the lowest
frequency component presents in the signal [21]. It is obtained by:

3= oo (s () o

Where, Floor is a Matlab routine which can round a number to the nearest
integer towards minus infinity, Fmin is the frequency of the lowest frequency
component whose power is greater than a certain percentage of the total signal
power, and F's is the sampling frequency of the signal. The second method uses
the length of the signal [22].It is given by:

J = fix (logs (length (signal))) (3)
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Where, Fix is a Matlab routine which can round a number to the nearest
integer towards zero. Our algorithm will be tested with a specific noisy signal.
Unlike techniques that use only a various degree of white noise, we use a mixture
between healthy PCG and a sinusoidal signal corrupted by a white noise as shown
in figure 2. The broad range of heart murmur frequencies vary from 80 to 600 hz,
and white noise cannot simulate these frequencies. Therefore, a sinusoidal signal
is used with different amplitudes and frequencies to simulate various situations
of murmurs. The mathematical model of our noisy signal can be expressed by
nPCG.

nPCG(n) = PCG(n) + o(n) (4)

Where PCG(n) is the useful signal and o(n) is the noise information , which
includes a mixture of sinusoidal signal sin 4, ) and white noise W Ny as pre-
sented by the following equation:

o(n) = singa, ) + WN (5)

The noise o depends of three variables A,f and I indicating the amplitude
of sinusoidal signal, the frequency of sinusoidal signal and the intensity of white
noise, respectively.

To evaluate the performance of our algorithm, three tests are carried out. The
first test explores the effect of waveform frequency on auto-denoising operation,
by varying the frequency of the sinusoidal signal from 80 to 500 hz, with a fixed
value of amplitude at 0.2 and a fixed intensity of white noise at 2%. The second
test explores the effect of waveform amplitude on auto-denoising operation, by
fixing the sinusoidal signal to a specific frequency (i.e 200Hz) and to a specific
intensity of white noise (2%), and varying the amplitude of the sinusoidal signal
from 0.1 to 0.8.The third test explores the effect of white noise intensity on auto-
denoising operation, by fixing the amplitude and the frequency of the sinusoidal
signal at 0.2 and 200Hz, respectively, and varying the intensity of the white noise
from 1% to 8%.

3 Results and Discussion

In the different tests carried out to evaluate the proposed algorithm, all Daubechies
and Coiflet wavelet families are used. However, only the first 10 wavelets in the
Symlet family are examined because their increasing complexity requires much
more computation time. For example, on the same computer under similar con-
ditions, the algorithm took about 6,5 s using only the first 10 Daubechies and
6,77 s using the first 10 Symlet. While using the last 10 Daubechies the algo-
rithm took about 104 secs, however, the computation time increased to more
than 10 mins (the algorithm has been cut) using the last 10 Symlet wave-lets.
So, 60 wavelets (db1-45, sym1-10 and Coifl-5) are tested at each level.

In this paper, only third test which studies the effect of white noise in-
tensity on auto-denoising operation is presented. Whither, 5 synthetic PCGs
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Healthy PCG signal

Magnitude

Samples x 10

Fig. 2. The mixture used in the test. (a) clean PCG signal, (b) a sinusoidal signal
(0.3sin(2.pi.100)) added with a white noise of 5%. (c) The resulting noisy PCG signal.

(nPCG1- - -nPCG5) with various white noise intensity are used (see table2). For
each signal, the performance of the methods (SNR[24], MAX[23] and EXP(the
proposed method)) is compared. The processing of each method provides three
informations (w, v and corr), indicating in each level the selected wavelet, the
value found by the selected wavelet, and the correlation coefficient between the
original signal and the denoised signal using the selected level and wavelet. Note
that the maximum number of decomposition is fixed using equation (2). This
last provides a number of 10 compositions for our test signal presented in figure
2.

In the case of nPCG1, where the intensity of noise is fixed at 1%, the highest
value of SNR method indicates the wavelet db43 found at level 2 as the optimal.
However the de-noising operation using these parameters provides a low corre-
lation coefficient (corr = 0.70). Nevertheless, the highest correlation coefficient
delivered by this method (corr = 0,94) is found at level 6 via db17, but it cannot
be detected. In the second method MAX, the highest value indicates the wavelet
db43 at level 4 as the optimal. However the correlation coefficient found is too
low (corr = 0.70). This method provides two high correlation coefficients at level
5 and 6 with a value of 0.93 and 0.96, respectively. Alike, these levels cannot be
detected. In the proposed method (EXP), the highest value indicates the wavelet
db32 found at level 5 as the optimal. Indeed, the correlation coefficient found
by these parameters is the highest (corr = 0.98). This method provides another
high value of correlation coefficient at level 6 (corr = 0.97). Also the value of
EXP found in this level is great compared to the others.

The increasing of white noise intensity from 2% to 8% in the rest of test
signal (see the cases nPCG2---nPCG5 in table 2), the similar results can be
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observed. The proposed method provides better results than the others for most
nPCG signals. The max(EXP) found coincides in most cases with the highest
correlation coefficient used as reference method (corr). Also, it can be observed
that the best denoising using EXP method is found in the middle levels of
decomposition (5 and 6) and by using the same wavelet db32.

Figure 4 shows the evaluation of each method over decomposition levels for
all test signals. From figure 4, the dark curves indicate the mean of correla-
tion coefficient vectors found by each method. The colored curves indicate the
evolution of the methods at each test signal.

Figure4.(a) presents the evolution of SNR method with its mean(corr) for
all test signal. It can be observed that the curves evolve between two extreme
values, max at level 2,3 and 4 and min at level 8. However, these points do
not correspond to the highest value of correlation coefficient found in level 6.
In figure4.(b), the same progression can be observed for Max method, the curve
vary between two extreme values, max at level 4 and min at level 8. Also these
points fail to meet the highest correlation coefficient value found in level 6. In
figure4.(c) the evolution of the proposed method (EXP) is presented. It can
be observed that this parameter takes a Gaussian form, where, its maximum
coincides perfectly the highest correlation coefficient found in level 5.

Finally, it can be observed that the proposed algorithm presents the best
performance in denoising of PCG signals, indicating that the idea of the ex-
ponential of approximation coefficients multiply by detail coefficients showed
superior performance than those of other proposed methods.

4 Conclusion and future work

In this paper, we presented a novel automatic mother wavelet selection scheme,
which selects the best mother wavelets and the best level of decomposition in
PCG denoising operation. The proposed method based on the multiplication
of detail coefficient by the exponential of approximation coefficient, referred as
EXP, searches, at each level, for the mother wavelet that provide a smallest
value, and then refers to the highest EXP value to select the wavelet and level
of decomposition. The performance of the EXP scheme was compared to those
of the SNR and MAX methods, previously proposed in the literature, for real
PCG signal embedded in different white noise intensity. In order to evaluate
the performance of the algorithm regarding murmurs extraction, the correlation
coefficient was employed. .

The EXP method showed advantageous for most of the analyzed signals,
indicating that the idea of searching the mother wavelet and the best level of
decomposition using our method showed superior than maximizing the energy of
approximation coefficients (MAX) or approximation coefficients to detail coeffi-
cients ratio (SNR). Future work will focus upon the improvement of computation
time of this algorithm.
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Table 2. Selected mother wavelets and decomposition level in different methods (SNR,
MAX and EXP) by varying white noise intensity.

PCG Signal
Sinus.Freq =200
Amp = 0.3 1 2 3 4 5 6 7 8 9 10

Decomposition Level

w  db2 db43 dbj0 db27 coifi db17 sym10 db12 dbil db8
SNR v 17,03 19,16 18,08 13,08 5,262 5,719 1,83 -0,8 6,602 12,32
corr 0,702 0,702 0,702 0,701 0,866 | 0,943 0,8 0,579 0,679 0,601

w  db42 db42 db43 db43 syml10 dbl4 coif4 coif4 coif4 coif4
nPCG1 MAX v 2407 2415 2432 2464 1495 1204 670 382,8 745,4 1473
W.N = 1% corr 0,702 0,702 0,702 0,702 0,932 0,965 0,789 0,771 0,764 0,763

w dbl db30 db19 db3 db32 db42 db34 db4 sym3 sym3
EXP v 0,064 0,125 0,322 2,17 52,24 27,31 5,824 4,851 0,513 0,406
corr 0,703 0,702 0,702 0,71 0,982 0,972 0,472 0,61 0,72 0,722

w  db28 db23 db1l9 db33 coifl db38 syml10 dbi2 dbll db8
SNR v 14,22 1585 17,2 13,28 5355 5692 1,821 -0,65 7,134 12,8
corr 0,702 0,702 0,702 0,701 0,866 | 0,971 0,801 0,579 0,682 0,6

w  db42 db42 db43 db43 syml10 dbl4 coiff coif4 coif4 coify
nPCG2 MAX v 2410 2416 2431 2462 1494 1204 668,9 382,1 745 1473
W.N = 2% corr 0,702 0,702 0,702 0,702 0,932 0,965 0,789 0,771 0,765 0,764

w  db40 db20 db33 db3 db32 db42 db34 db4 sym3 sym3
EXP v 0,156 0,246 0,408 1,945 54,37 31,15 5,721 4,877 0,52 0,557
corr 0,702 0,702 0,702 0,711 0,981 0,972 0,472 0,612 0,721 0,722

w dbi1 db26 db19 db33 db2 db17 sym10 dbi2 dbi1 db8
SNR v 11,44 13,08 14,48 13,03 5222 5865 1,751 -0,95 6,325 11,7
corr 0,699 0,701 0,702 0,701 0,862 [0,943 0,801 0,577 0,675 0,597

w  db42 db42 db43 db43 syml10 dbl4 coif coif4 coif4 coif4
nPCG3 MAX v 2428 2425 2435 2463 1495 1201 665 376 731,1 1445
W.N = 4% corr 0,699 0,701 0,702 0,701 0,932 0,965 0,79 0,771 0,764 0,763

w  db12 sym6 db5 db3 db32 db42 db34 db4 sym3 sym3
EXP v 0,314 0,526 0,958 2,695 55,55 17,21 6,16 4,86 0,552 0,595
corr 0,699 0,701 0,702 0,71 | 0,981 0,971 0,472 0,606 0,72 0,721

w dbi11 db26 db48 db27 coifl db38 sym10 db12 dbil db8
SNR v 9,341 11,09 13,25 13,11 5,236 5,756 1,713 -0,51 7,065 12,19
corr 0,696 0,7 0,701 0,701 0,864 (0,971 0,801 0,578 0,677 0,604

w  db42 db42 db42 db42 syml10 dbl4 coif4 coif4d coif4 coify
nPCG4 MAX v 2451 2435 2440 2464 1501 1213 675,9 400,1 780,6 1545
W.N = 6% corr 0,696 0,7 0,701 0,701 0,931 0,964 0,79 0,77 0,764 0,763

w  db38 db10 coif3 db3 db32 db42 db34 db4 sym3 sym3
EXP v 0,502 0,715 1,294 2,202 51,52 25,79 5,665 4,954 0,522 0,671
corr 0,696 0,7 0,701 0,711 0,981 0,971 0,47 0,611 0,72 0,721

w db20 db32 dbj4 db27 db2 db17 symi0 db12 dbil dbS
SNR v 8586 10,1 11,5 12,39 5402 6,236 1,951 -0,95 7,269 12,92
corr 0,69 0,696 0,699 0,7 0,861 0,942 0,799 0,579 0,685 0,602

w  db43 db42 db48 db43 syml10 dbl4 dbl4 coif4 coif4 coif4
nPCG5H MAX v 2486 2451 2445 2464 1496 1192 641,1 318,9 621,2 1229
W.N = 8% corr 0,69 0,696 0,699 0,7 0,93 0,964 0,62 0,769 0,765 0,764

w db18 db20 db20 db39 db32 dbj2 db34 db34 symb symb
EXP v 0,662 1,066 1,566 3,842 55,05 23,38 5,633 4,755 0,356 0,26
corr 0,69 0,696 0,699 0,7 | 0,98 0,971 0,472 0,328 0,705 0,699
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Fig. 3. Denoised signal found by each method. (a) Noisy PCG signal (case of PCG5-
table4), (b) denoised signal from SNR, (c) denoised signal from MAX, (d) denoised
signal from EXP.

’ (@) (b))

104 Y § ’ 104 — - 10
£ AR i s \ .

'y W\ 5

S os| s \ , S os S os
8 ~ /a 8 \ o 8
5 L g -\ g
= o6 T 2 o6 3 = o
S —=—MeanCor / = —=—MeanCort <
3 SNR1 \ 3 — MAX1 , °
Noosd . snr2 A /' S oed . maxe 8o
g -~ SNR3 SN / g -~ MAX3 g
5 02—~ SNR4 \ 5 02— MAX4 5 o2
c -~ SNRS / < -~ MAX5 <
g % g
Z 0o { < oo % oo

T S 02 4 02 4T

o 1 2 3 4 5 6 7 & 8 10 1 o 1 2 3 4 5 6 7 & 8 10 1 0 1 2z 3 4 5 6 7 & 85 1 u
Levels of decomposition Levels of decomposition Levels of decomposition

Fig. 4. The evolution of the methods over decomposition levels. (a): the evolution of
SNR method, (b): the evolution of MAX method, (c): the evolution of EXP method
(the proposed method).
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